I have had similar problems. I used to have a complicated problem and defining a solution in terms of a fixed length vector was not desirable. Even a variable length vector does not look attractive. Most of the libraries focus on cases where the cost function is cheap to calculate which did not match my problem. Lack of parallelism is their another pitfall. Expecting the user to allocate memory for being used by the library is adding insult into injury. My cases were even more complicated because most of the libraries check the nonlinear conditions before evaluation. While, I needed to check the nonlinear condition during or after the evaluation based on the result of the evaluation. It is also undesirable when I needed to evaluate the solution to calculate its cost and then I had to recalculate the solution to present it. In most of the cases, I had to write the cost function two times. Once for GA and once for presentation.
Having all of these problems, I eventually, designed my own openGA library which is now mature.
- This library is based on C++ and distributed with free Mozilla Public License 2.0. It guarantees that using this library does not limit your project and it can be used for commercial or none commercial purposes for free without asking for any permission. Not all libraries are transparent in this sense.
- It supports three modes of single objective, multiple objective (NSGA-III) and Interactive Genetic Algorithm (IGA).
- The solution is not mandated to be a vector. It can be any structure with any customized design containing any optional values with variable length. This feature makes this library suitable for Genetic Programming (GP) applications.
- C++11 is used. Template feature allows flexibility of the solution structure design.
- The standard library is enough to use this library. There is no dependency beyond that. The entire library is also a single header file for ease of use.
- The library supports parallelism by default unless you turn it off. If you have an N-core CPU, the number of threads are set to N by default. You can change the settings. You can also set if the solution evaluations are distributed between threads equally or they are assigned to any thread which has finished its job and is currently idle.
- The solution evaluation is separated from calculation of the final cost. It means that your evaluation function can simulate the system and keep a lot of information. Your cost function is called later and reports the cost based on the evaluation. While your evaluation results are kept to be used later by the user. You do not need to re-calculate it again.
- You can reject a solution at any time during the evaluation. No waste of time. In fact, the evaluation and constraint check are integrated.
- The
GA assist
feature help you to produce the C++ code base from the information you provide.
If these features match what you need, I recommend having a look at the user manual and the examples of openGA.
The number of the readers and citation of the related publication as well as its github favorite marks is increasing and its usage is keep growing.