I prefer this solution:
col = df.pop("Mid")
df.insert(0, col.name, col)
It's simpler to read and faster than other suggested answers.
def move_column_inplace(df, col, pos):
col = df.pop(col)
df.insert(pos, col.name, col)
Performance assessment:
For this test, the currently last column is moved to the front in each repetition. In-place methods generally perform better. While citynorman's solution can be made in-place, Ed Chum's method based on .loc
and sachinnm's method based on reindex
cannot.
While other methods are generic, citynorman's solution is limited to pos=0
. I didn't observe any performance difference between df.loc[cols]
and df[cols]
, which is why I didn't include some other suggestions.
Original system (2019): Python 3.6.8 and pandas 0.24.2 on a MacBook Pro (Mid 2015).
Current system (2022): Python 3.10.5 and pandas 1.4.3 on a MacBook Pro (2021, Apple M1).
import numpy as np
import pandas as pd
n_cols = 11
df = pd.DataFrame(np.random.randn(200000, n_cols),
columns=range(n_cols))
def move_column_inplace(df, col, pos):
col = df.pop(col)
df.insert(pos, col.name, col)
def move_to_front_normanius_inplace(df, col):
move_column_inplace(df, col, 0)
return df
def move_to_front_chum(df, col):
cols = list(df)
cols.insert(0, cols.pop(cols.index(col)))
return df.loc[:, cols]
def move_to_front_chum_inplace(df, col):
col = df[col]
df.drop(col.name, axis=1, inplace=True)
df.insert(0, col.name, col)
return df
def move_to_front_elpastor(df, col):
cols = [col] + [ c for c in df.columns if c!=col ]
return df[cols] # or df.loc[cols]
def move_to_front_sachinmm(df, col):
cols = df.columns.tolist()
cols.insert(0, cols.pop(cols.index(col)))
df = df.reindex(columns=cols, copy=False)
return df
def move_to_front_citynorman_inplace(df, col):
# This approach exploits that reset_index() moves the index
# at the first position of the data frame.
df.set_index(col, inplace=True)
df.reset_index(inplace=True)
return df
def test(method, df):
col = np.random.randint(0, n_cols)
method(df, col)
col = np.random.randint(0, n_cols)
ret_mine = move_to_front_normanius_inplace(df.copy(), col)
ret_chum1 = move_to_front_chum(df.copy(), col)
ret_chum2 = move_to_front_chum_inplace(df.copy(), col)
ret_elpas = move_to_front_elpastor(df.copy(), col)
ret_sach = move_to_front_sachinmm(df.copy(), col)
ret_city = move_to_front_citynorman_inplace(df.copy(), col)
# Assert equivalence of solutions.
assert(ret_mine.equals(ret_chum1))
assert(ret_mine.equals(ret_chum2))
assert(ret_mine.equals(ret_elpas))
assert(ret_mine.equals(ret_sach))
assert(ret_mine.equals(ret_city))
Results:
# For n_cols = 11:
%timeit test(move_to_front_normanius_inplace, df)
# 137 µs ± 692 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)
%timeit test(move_to_front_citynorman_inplace, df)
# 177 µs ± 10.7 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)
%timeit test(move_to_front_sachinmm, df)
# 821 µs ± 11.8 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
%timeit test(move_to_front_chum, df)
# 926 µs ± 10.7 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
%timeit test(move_to_front_elpastor, df)
# 901 µs ± 6.44 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
%timeit test(move_to_front_chum_inplace, df)
# 3.25 ms ± 32.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
# For n_cols = 31:
%timeit test(move_to_front_normanius_inplace, df)
# 188 µs ± 3.46 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)
%timeit test(move_to_front_citynorman_inplace, df)
# 214 µs ± 649 ns per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
%timeit test(move_to_front_sachinmm, df)
# 5.17 ms ± 68.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit test(move_to_front_chum, df)
# 5.52 ms ± 82.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit test(move_to_front_elpastor, df)
# 5.48 ms ± 198 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit test(move_to_front_chum_inplace, df)
# 14.7 ms ± 317 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Above are the updated values for a rerun in 2022. The rankings have remained stable over the past years for different systems, although the absolute numbers have decreased by factors between 2 and 10, from which citynorman's solution and my solution (normanius) have benefited the most.
df.loc[:, np.roll(df.columns, 1)]
. Not sure whether that's easier to read than the list comprehensions others have noted elsewhere on this page, but I use numpy a lot so I find it easy. Cheers! – Rawhide