Note: This may involve a good deal of number theory, but the formula I found online is only an approximation, so I believe an exact solution requires some sort of iterative calculation by a computer.
My goal is to find an efficient algorithm (in terms of time complexity) to solve the following problem for large values of n:
Let R(a,b) be the amount of steps that the Euclidean algorithm takes to find the GCD of nonnegative integers a and b. That is, R(a,b) = 1 + R(b,a%b), and R(a,0) = 0. Given a natural number n, find the sum of R(a,b) for all 1 <= a,b <= n.
For example, if n = 2, then the solution is R(1,1) + R(1,2) + R(2,1) + R(2,2) = 1 + 2 + 1 + 1 = 5.
Since there are n^2 pairs corresponding to the numbers to be added together, simply computing R(a,b) for every pair can do no better than O(n^2), regardless of the efficiency of R. Thus, to improve the efficiency of the algorithm, a faster method must somehow calculate the sum of R(a,b) over many values at once. There are a few properties that I suspect might be useful:
- If a = b, then R(a,b) = 1
- If a < b, then R(a,b) = 1 + R(b,a)
- R(a,b) = R(ka,kb) where k is some natural number
- If b <= a, then R(a,b) = R(a+b,b)
- If b <= a < 2b, then R(a,b) = R(2a-b,a)
Because of the first two properties, it is only necessary to find the sum of R(a,b) over pairs where a > b. I tried using this in addition to the third property in a method that computes R(a,b) only for pairs where a and b are also coprime in addition to a being greater than b. The total sum is then n plus the sum of (n / a) * ((2 * R(a,b)) + 1) over all such pairs (using integer division for n / a). This algorithm still had time complexity O(n^2), I discovered, due to Euler's totient function being roughly linear.
I don't need any specific code solution, I just need to figure out the procedure for a more efficient algorithm. But if the programming language matters, my attempts to solve this problem have used C++.
Side note: I have found that a formula has been discovered that nearly solves this problem, but it is only an approximation. Note that the formula calculates the average rather than the sum, so it would just need to be multiplied by n^2. If the formula could be expanded to reduce the error, it might work, but from what I can tell, I'm not sure if this is possible.
O(n^2)
(and probably slightly worse). Doing it bottom-up might be faster, but you'd still need to either check or sum every value in the [n*n] array, so stillO(n^2)
at best. In it's best form, it'd likely just be the Stern-Brocot tree similar to our answer. – Ayotte