I am using simulated annealing, as implemented in R's package GenSa
(function GenSA
), to search for values of input variables that result in "good values" (compared to some baseline) of a highly dimensional function. I noticed that setting maximum number of calls of the objective function has no effect on the running time. Am I doing something wrong or is this a bug?
Here is a modification of the example given in GenSA
help file.
library(GenSA)
Rastrigin <- local({
index <- 0
function(x){
index <<- index + 1
if(index%%1000 == 0){
cat(index, " ")
}
sum(x^2 - 10*cos(2*pi*x)) + 10*length(x)
}
})
set.seed(1234)
dimension <- 1000
lower <- rep(-5.12, dimension)
upper <- rep(5.12, dimension)
out <- GenSA(lower = lower, upper = upper, fn = Rastrigin, control = list(max.call = 10^4))
Even though the max.call
is specified to be 10,000, GenSA
calls the objective function more than 46,000 times (note that the objective is called within a local environment in order to track the number of calls). The same problem rises when trying to specify the maximum running time via max.time
.