If you look at Data.AVL.Sets
, you can see that it is parameterised by a strict total order associated to the equivalence relation _≡_
(defined in Relation.Binary.PropositionalEquality
):
module Data.AVL.Sets
{k ℓ} {Key : Set k} {_<_ : Rel Key ℓ}
(isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_)
where
Now we can have a look at how the strict total order on String
s is defined. We first convert the String
s to List Char
s and then compare them based on the strict lexicographic ordering for lists:
strictTotalOrder =
On.strictTotalOrder
(StrictLex.<-strictTotalOrder Char.strictTotalOrder)
toList
If we dig into the code for StrictLex.<-strictTotalOrder
, we can see that the equivalence relation associated to our List
of Char
s is built using the pointwise lifting Pointwise.isEquivalence
of whatever the equivalence relation for Char
s is.
But Pointwise.isEquivalence
is defined in term of this datatype:
data Rel {a b ℓ} {A : Set a} {B : Set b}
(_∼_ : REL A B ℓ) : List A → List B → Set (a ⊔ b ⊔ ℓ) where
[] : Rel _∼_ [] []
_∷_ : ∀ {x xs y ys} (x∼y : x ∼ y) (xs∼ys : Rel _∼_ xs ys) →
Rel _∼_ (x ∷ xs) (y ∷ ys)
So when Agda expects a strict total order associated to _≡_
, we instead provided it with a strict total order associated to Rel _ on toList
which has no chance of unifying.
How do we move on from here? Well, you could define your own strict total order on strings. Alternatively, you can try to turn the current one into one where _≡_
is the equivalence used. This is what I am going to do in the rest of this post.
So, I want to reuse an IsStrictTotalOrder R O
with a different equivalence relation R′
. The trick is to notice that if can transport values from R a b
to R′ a b
then, I should be fine! So I introduce a notion of RawIso A B
which states that we can always transport values from A
to B
and vice-versa:
record RawIso {ℓ : Level} (A B : Set ℓ) : Set ℓ where
field
push : A → B
pull : B → A
open RawIso public
Then we can prove that RawIso
s preserve a lot of properties:
RawIso-IsEquivalence :
{ℓ ℓ′ : Level} {A : Set ℓ} {R R′ : Rel A ℓ′} →
(iso : {a b : A} → RawIso (R a b) (R′ a b)) →
IsEquivalence R → IsEquivalence R′
RawIso-IsEquivalence = ...
RawIso-Trichotomous :
{ℓ ℓ′ ℓ′′ : Level} {A : Set ℓ} {R R′ : Rel A ℓ′} {O : Rel A ℓ′′} →
(iso : {a b : A} → RawIso (R a b) (R′ a b)) →
Trichotomous R O → Trichotomous R′ O
RawIso-Trichotomous = ...
RawIso-Respects₂ :
{ℓ ℓ′ ℓ′′ : Level} {A : Set ℓ} {R R′ : Rel A ℓ′} {O : Rel A ℓ′′} →
(iso : {a b : A} → RawIso (R a b) (R′ a b)) →
O Respects₂ R → O Respects₂ R′
RawIso-Respects₂ = ...
All these lemmas can be combined to prove that given a strict total order, we can build a new one via a RawIso
:
RawIso-IsStrictTotalOrder :
{ℓ ℓ′ ℓ′′ : Level} {A : Set ℓ} {R R′ : Rel A ℓ′} {O : Rel A ℓ′′} →
(iso : {a b : A} → RawIso (R a b) (R′ a b)) →
IsStrictTotalOrder R O → IsStrictTotalOrder R′ O
RawIso-IsStrictTotalOrder = ...
Now that we know we can transport strict total orders along these RawIso
s, we simply need to prove that the equivalence relation used by the strict total order defined in Data.String
is in RawIso
with propositional equality. It's (almost) simply a matter of unfolding the definitions. The only problem is that equality on characters is defined by first converting them to natural numbers and then using propositional equality. But the toNat
function used has no stated property (compare e.g. to toList
and fromList
which are stated to be inverses)! I threw in this hack and I think it should be fine but if someone has a better solution, I'd love to know it!
toNat-injective : {c d : Char} → toNat c ≡ toNat d → c ≡ d
toNat-injective {c} pr with toNat c
toNat-injective refl | ._ = trustMe -- probably unsafe
where open import Relation.Binary.PropositionalEquality.TrustMe
Anyway, now that you have this you can unfold the definitions and prove:
rawIso : {a b : String} →
RawIso ((Ptwise.Rel (_≡_ on toNat) on toList) a b) (a ≡ b)
rawIso {a} {b} = record { push = `push ; pull = `pull } where
`push : {a b : String} → (Ptwise.Rel (_≡_ on toNat) on toList) a b → a ≡ b
`push {a} {b} pr =
begin
a ≡⟨ sym (fromList∘toList a) ⟩
fromList (toList a) ≡⟨ cong fromList (aux pr) ⟩
fromList (toList b) ≡⟨ fromList∘toList b ⟩
b
∎ where
aux : {xs ys : List Char} → Ptwise.Rel (_≡_ on toNat) xs ys → xs ≡ ys
aux = Ptwise.rec (λ {xs} {ys} _ → xs ≡ ys)
(cong₂ _∷_ ∘ toNat-injective) refl
`pull : {a b : String} → a ≡ b → (Ptwise.Rel (_≡_ on toNat) on toList) a b
`pull refl = Ptwise.refl refl
Which allows you to
stringSTO : IsStrictTotalOrder _ _
stringSTO = StrictTotalOrder.isStrictTotalOrder String.strictTotalOrder
open Data.AVL.Sets (RawIso-IsStrictTotalOrder rawIso stringSTO)
Phew!
I have uploaded a raw gist so that you can easily access the code, see the imports, etc.
open import Data.String.Properties; open import Data.AVL.Sets strictTotalOrder
(I would have posted this update as an answer, unfortunately moderator jerks SO is so famous for have decided to delete my post). – Downcome