I have a simple Trie that I'm using to store about 80k words of length 2 - 15. It works great for checking to see if a string is a word; However, now I need a way of getting a random word of a given length. In other words, I need "getRandomWord(5)" to return a 5 letter word, with all 5 letter words having an equal chance of being returned.
The only way I can think of is to pick a random number and traverse the tree breadth-first until I've passed that many words of the desired length. Is there a better way to do this?
Possibly unnecessary, but here's the code for my trie.
class TrieNode {
private TrieNode[] c;
private Boolean end = false;
public TrieNode() {
c = new TrieNode[26];
}
protected void insert(String word) {
int n = word.charAt(0) - 'A';
if (c[n] == null)
c[n] = new TrieNode();
if (word.length() > 1) {
c[n].insert(word.substring(1));
} else {
c[n].end = true;
}
}
public Boolean isThisAWord(String word) {
if (word.length() == 0)
return false;
int n = word.charAt(0) - 'A';
if (c[n] != null && word.length() > 1)
return c[n].isThisAWord(word.substring(1));
else if (c[n] != null && c[n].end && word.length() == 1)
return true;
else
return false;
}
}
Edit: The marked answer worked well; I'll add my implementation here for posterity, in case it helps anyone with a similar problem.
First, I made a helper class to hold metadata about the TrieNodes I'm using in the search:
class TrieBranch {
TrieNode node;
int letter;
int depth;
public TrieBranch(TrieNode n, int l, int d) {
letter = l; node = n; depth = d;
}
}
This is the class that holds the Trie and implements the search for the random word. I'm kind of a beginner so there may be better ways to do this, but I tested this a bit and it seems to work. No error handling, so caveat emptor.
class Dict {
final static int maxWordLength = 13;
final static int lettersInAlphabet = 26;
TrieNode trie;
int lengthFrequencyByLetter[][];
int totalLengthFrequency[];
public Dict() {
trie = new TrieNode();
lengthFrequencyByLetter = new int[lettersInAlphabet][maxWordLength + 1];
totalLengthFrequency = new int[maxWordLength + 1];
}
public String getRandomWord(int length) {
// Returns a random word of the specified length from the trie
// First, pick a random number from 0 to [number of words with this length]
Random r = new Random();
int wordIndex = r.nextInt(totalLengthFrequency[length]);
// figure out what the first letter of this word would be
int firstLetter = -1, totalSoFar = 0;
while (totalSoFar <= wordIndex) {
firstLetter++;
totalSoFar += lengthFrequencyByLetter[firstLetter][length];
}
wordIndex -= (totalSoFar - lengthFrequencyByLetter[firstLetter][length]);
// traverse the (firstLetter)'th node of trie depth-first to find the word (wordIndex)'th word
int[] result = new int[length + 1];
Stack<TrieBranch> stack = new Stack<TrieBranch>();
stack.push(new TrieBranch(trie.getBranch(firstLetter), firstLetter, 1));
while (!stack.isEmpty()) {
TrieBranch n = stack.pop();
result[n.depth] = n.letter;
// examine the current node
if (n.depth == length && n.node.isEnd()) {
wordIndex--;
if (wordIndex < 0) {
// search is over
String sResult = "";
for (int i = 1; i <= length; i++) {
sResult += (char)(result[i] + 'a');
}
return sResult;
}
}
// handle child nodes unless they're deeper than target length
if (n.depth < length) {
for (int i = 25; i >= 0; i--) {
if (n.node.getBranch(i) != null)
stack.push(new TrieBranch(n.node.getBranch(i), i, n.depth + 1));
}
}
}
return "failure of some sort";
}
}
Using a casual dictionary (80k words max length 12) each call to getRandomWord() takes abount .2ms, and using a more thorough dictionary (250K words, max length 24) each call takes about 1ms.