I'm creating a visualization to illustrate how Principal Components Analysis works, by plotting Eigenvalues for some actual data (for the purposes of the illustration, I'm subsetting to 2 dimensions).
I'm want a combination of these two plots from this fantastic PCA tutorial, only for my real data.
I can plot the vectors and all ok:
Person1 <- c(-3,1,1,-3,0,-1,-1,0,-1,-1,3,4,5,-2,1,2,-2,-1,1,-2,1,-3,4,-6,1,-3,-4,3,3,-5,0,3,0,-3,1,-2,-1,0,-3,3,-4,-4,-7,-5,-2,-2,-1,1,1,2,0,0,2,-2,4,2,1,2,2,7,0,3,2,5,2,6,0,4,0,-2,-1,2,0,-1,-2,-4,-1)
Person2 <- c(-4,-3,4,-5,-1,-1,-2,2,1,0,3,2,3,-4,2,-1,2,-1,4,-2,6,-2,-1,-2,-1,-1,-3,5,2,-1,3,3,1,-3,1,3,-3,2,-2,4,-4,-6,-4,-7,0,-3,1,-2,0,2,-5,2,-2,-1,4,1,1,0,1,5,1,0,1,1,0,2,0,7,-2,3,-1,-2,-3,0,0,0,0)
df <- data.frame(cbind(Person1, Person2))
g <- ggplot(data = df, mapping = aes(x = Person1, y = Person2))
g <- g + geom_point(alpha = 1/3) # alpha b/c of overplotting
g <- g + geom_smooth(method = "lm") # just for comparsion
g <- g + coord_fixed() # otherwise, the angles of vectors are off
corre <- cor(x = df$Person1, y = df$Person2, method = "spearman") # calculate correlation, must be spearman b/c of measurement
matrix <- matrix(c(1, corre, corre, 1), nrow = 2) # make this into a matrix
eigen <- eigen(matrix) # calculate eigenvectors and values
eigen$vectors.scaled <- eigen$vectors %*% diag(sqrt(eigen$values))
# scale eigenvectors to length = square-root
# as per http://stats.stackexchange.com/questions/9898/how-to-plot-an-ellipse-from-eigenvalues-and-eigenvectors-in-r
g <- g + stat_ellipse(type = "norm")
g <- g + stat_ellipse(type = "t")
# add ellipse, though I am not sure which is the adequate type
# as per https://github.com/hadley/ggplot2/blob/master/R/stat-ellipse.R
g <- g + geom_abline(intercept = 0, slope = eigen$vectors.scaled[1,1], colour = "green") # add slope for pc1
g <- g + geom_abline(intercept = 0, slope = eigen$vectors.scaled[1,2], colour = "red") # add slope for pc2
g <- g + geom_segment(aes(x = 0, y = 0, xend = max(df), yend = eigen$vectors.scaled[1,1] * max(df)), colour = "green", arrow = arrow(length = unit(0.2, "cm"))) # add arrow for pc1
g <- g + geom_segment(aes(x = 0, y = 0, xend = max(df), yend = eigen$vectors.scaled[1,2] * max(df)), colour = "red", arrow = arrow(length = unit(0.2, "cm"))) # add arrow for pc1
g
So far so good (well).
How do I know use geom_segment
to drop a perpendicular from every datapoint to, say, the green first principal component?