This is very dependant on the specifics of your use-case and how much effort would you want to put in.
I will, however, explain the thought process I would use when making such a decision.
The naive solution to handle SQS messages would be to do it one at a time sequentially (i.e. without concurrency). It doesn't mean that you're limited to a single message at a time since you can add more pods to the cluster.
So even in that naive solution you have one concurrency point you can utilize but it has a lot of overhead. The way to reduce overhead is usually to utilize the same overhead but process more messages with it. That's why, for example, SQS allows you to get 1-10 messages in a single call and not just one. It spreads the call overhead over 10 messages. In the naive solution the overhead is the cost of starting a whole process. Using the process for more messages means concurrent processing.
I've found that for stable and flexible concurrency you want many points of concurrency, but have each of them capped at some configurable degree of parallelism (whether hardcoded or actual configuration). That way you can tweak each of them to achieve optimal output (increase when you have free CPU and memory and decrease otherwise).
So, where can the additional concurrency be introduced? This is a progression where each step utilizes resources better but requires more effort.
- Fetch 10 messages instead of one for every SQS API call and process them concurrently. That way you have 2 points of concurrency you can control: Number of pods, number of messages (up to 10) concurrently.
- Have a few tasks each fetching 1-10 tasks and processing them concurrently. That's 3 concurrency points: Pods, tasks and messages per task. Both these solutions suffer from messages with varying processing time, meaning that a single long running message will "hold up" all the other 1-9 "slots" of work effectively reducing the concurrency to lower than configured.
- Set up a TPL Dataflow block to process the messages concurrently and a task (or few) continuously fetching messages and pumping into the block. Keep in mind that SQS messages need to be explicitly deleted so the block needs to receive the message handle too so the message can be deleted after processing.
- TPL Dataflow "pipe" consisting of a few blocks where each has it's own concurrency degree. That's useful when you have different steps of processing of the message where each step has different limitations (e.g. different APIs with different throttling configurations).
I personally am very fond of, and comfortable with, the Dataflow library so I would go straight to it. But simpler solutions are also valid when performance is less of an issue.