The reason this is happening is that all of the values for some of the groups you're generating do not have a single non-nan value.
Take the value/col mass
for the group ('Microlensing', 2012)
it has 6 entries of which there are 0 non-nan values. If there are no actual values to take the mean of you can't really calculate a mean which can be used for imputing the other nan-values in the same group.
Here is the debug code I used:
import math
import seaborn as sns
df = sns.load_dataset("planets")
print(df.isna().sum())
null_cols = df.columns[df.isnull().any()]
def inspect_fillna(x):
mean_x = x.mean()
if math.isnan(mean_x):
print("group=", x.name, ", entries=", len(x), ", all_are_nan=", len(x) == x.isna().sum(), sep="")
imputed_x = x.fillna(mean_x)
return imputed_x
for col in null_cols:
print("\n\ncol=", col, sep="")
df[col] = df.groupby(["method", "year"])[col].transform(lambda x: inspect_fillna(x))
print(df.isna().sum())
Here is the output:
method 0
number 0
orbital_period 43
mass 522
distance 227
year 0
dtype: int64
col=orbital_period
group=('Imaging', 2004), entries=3, all_are_nan=True
group=('Imaging', 2005), entries=1, all_are_nan=True
group=('Imaging', 2007), entries=1, all_are_nan=True
group=('Imaging', 2012), entries=2, all_are_nan=True
group=('Imaging', 2013), entries=7, all_are_nan=True
group=('Microlensing', 2004), entries=1, all_are_nan=True
group=('Microlensing', 2009), entries=2, all_are_nan=True
group=('Microlensing', 2012), entries=6, all_are_nan=True
group=('Microlensing', 2013), entries=4, all_are_nan=True
group=('Transit Timing Variations', 2014), entries=1, all_are_nan=True
col=mass
group=('Astrometry', 2010), entries=1, all_are_nan=True
group=('Astrometry', 2013), entries=1, all_are_nan=True
group=('Eclipse Timing Variations', 2008), entries=2, all_are_nan=True
group=('Eclipse Timing Variations', 2010), entries=2, all_are_nan=True
group=('Eclipse Timing Variations', 2011), entries=3, all_are_nan=True
group=('Imaging', 2004), entries=3, all_are_nan=True
group=('Imaging', 2005), entries=1, all_are_nan=True
group=('Imaging', 2006), entries=4, all_are_nan=True
group=('Imaging', 2007), entries=1, all_are_nan=True
group=('Imaging', 2008), entries=8, all_are_nan=True
group=('Imaging', 2009), entries=3, all_are_nan=True
group=('Imaging', 2010), entries=6, all_are_nan=True
group=('Imaging', 2011), entries=3, all_are_nan=True
group=('Imaging', 2012), entries=2, all_are_nan=True
group=('Imaging', 2013), entries=7, all_are_nan=True
group=('Microlensing', 2004), entries=1, all_are_nan=True
group=('Microlensing', 2005), entries=2, all_are_nan=True
group=('Microlensing', 2006), entries=1, all_are_nan=True
group=('Microlensing', 2008), entries=4, all_are_nan=True
group=('Microlensing', 2009), entries=2, all_are_nan=True
group=('Microlensing', 2010), entries=2, all_are_nan=True
group=('Microlensing', 2011), entries=1, all_are_nan=True
group=('Microlensing', 2012), entries=6, all_are_nan=True
group=('Microlensing', 2013), entries=4, all_are_nan=True
group=('Orbital Brightness Modulation', 2011), entries=2, all_are_nan=True
group=('Orbital Brightness Modulation', 2013), entries=1, all_are_nan=True
group=('Pulsar Timing', 1992), entries=2, all_are_nan=True
group=('Pulsar Timing', 1994), entries=1, all_are_nan=True
group=('Pulsar Timing', 2003), entries=1, all_are_nan=True
group=('Pulsar Timing', 2011), entries=1, all_are_nan=True
group=('Pulsation Timing Variations', 2007), entries=1, all_are_nan=True
group=('Transit', 2002), entries=1, all_are_nan=True
group=('Transit', 2004), entries=5, all_are_nan=True
group=('Transit', 2006), entries=5, all_are_nan=True
group=('Transit', 2007), entries=16, all_are_nan=True
group=('Transit', 2008), entries=17, all_are_nan=True
group=('Transit', 2009), entries=18, all_are_nan=True
group=('Transit', 2010), entries=48, all_are_nan=True
group=('Transit', 2011), entries=80, all_are_nan=True
group=('Transit', 2012), entries=92, all_are_nan=True
group=('Transit', 2014), entries=40, all_are_nan=True
group=('Transit Timing Variations', 2011), entries=1, all_are_nan=True
group=('Transit Timing Variations', 2012), entries=1, all_are_nan=True
group=('Transit Timing Variations', 2013), entries=1, all_are_nan=True
group=('Transit Timing Variations', 2014), entries=1, all_are_nan=True
col=distance
group=('Eclipse Timing Variations', 2009), entries=1, all_are_nan=True
group=('Eclipse Timing Variations', 2011), entries=3, all_are_nan=True
group=('Eclipse Timing Variations', 2012), entries=1, all_are_nan=True
group=('Microlensing', 2004), entries=1, all_are_nan=True
group=('Microlensing', 2005), entries=2, all_are_nan=True
group=('Microlensing', 2006), entries=1, all_are_nan=True
group=('Microlensing', 2008), entries=4, all_are_nan=True
group=('Microlensing', 2009), entries=2, all_are_nan=True
group=('Microlensing', 2010), entries=2, all_are_nan=True
group=('Microlensing', 2011), entries=1, all_are_nan=True
group=('Orbital Brightness Modulation', 2013), entries=1, all_are_nan=True
group=('Pulsar Timing', 1992), entries=2, all_are_nan=True
group=('Pulsar Timing', 1994), entries=1, all_are_nan=True
group=('Pulsar Timing', 2003), entries=1, all_are_nan=True
group=('Pulsation Timing Variations', 2007), entries=1, all_are_nan=True
group=('Transit', 2002), entries=1, all_are_nan=True
group=('Transit Timing Variations', 2014), entries=1, all_are_nan=True
method 0
number 0
orbital_period 28
mass 405
distance 26
year 0
dtype: int64
Possible solution: Consider making your groups larger by removing year
or method
from your group.
df.fillna(df.groupby(['method', 'year'])['mass'].transform('mean')).isnull().sum()
– Boling