Let's assume for the moment that all counts are less than or equal to some maximum M, with M < 100. As mentioned in the OP's link, this means that we only need to decide counts for the 16 letters that appear in these number words, as counts for the other 10 letters are already determined by the specified prefix text and can't change.
One property that I think is worth exploiting is the fact that, if we take some (possibly incorrect) solution and rearrange the number-words in it, then the total letter counts don't change. IOW, if we ignore the letters spent "naming themselves" (e.g. the c
in two c's
) then the total letter counts only depend on the multiset of number-words that are actually present in the sentence. What that means is that instead of having to consider all possible ways of assigning one of M number-words to each of the 16 letters, we can enumerate just the (much smaller) set of all multisets of number-words of size 16 or less, having elements taken from the ground set of number-words of size M, and for each multiset, look to see whether we can fit the 16 letters to its elements in a way that uses each multiset element exactly once.
Note that a multiset of numbers can be uniquely represented as a nondecreasing list of numbers, and this makes them easy to enumerate.
What does it mean for a letter to "fit" a multiset? Suppose we have a multiset W of number-words; this determines total letter counts for each of the 16 letters (for each letter, just sum the counts of that letter across all the number-words in W; also add a count of 1 for the letter "S" for each number-word besides "one", to account for the pluralisation). Call these letter counts f["A"] for the frequency of "A", etc. Pretend we have a function etoi() that operates like C's atoi(), but returns the numeric value of a number-word. (This is just conceptual; of course in practice we would always generate the number-word from the integer value (which we would keep around), and never the other way around.) Then a letter x fits a particular number-word w in W if and only if f[x] + 1 = etoi(w), since writing the letter x itself into the sentence will increase its frequency by 1, thereby making the two sides of the equation equal.
This does not yet address the fact that if more than one letter fits a number-word, only one of them can be assigned it. But it turns out that it is easy to determine whether a given multiset W of number-words, represented as a nondecreasing list of integers, simultaneously fits any set of letters:
- Calculate the total letter frequencies f[] that W implies.
- Sort these frequencies.
- Skip past any zero-frequency letters. Suppose there were k of these.
- For each remaining letter, check whether its frequency is equal to one less than the numeric value of the number-word in the corresponding position. I.e. check that f[k] + 1 == etoi(W[0]), f[k+1] + 1 == etoi(W[1]), etc.
- If and only if all these frequencies agree, we have a winner!
The above approach is naive in that it assumes that we choose words to put in the multiset from a size M ground set. For M > 20 there is a lot of structure in this set that can be exploited, at the cost of slightly complicating the algorithm. In particular, instead of enumerating straight multisets of this ground set of all allowed numbers, it would be much better to enumerate multisets of {"one", "two", ..., "nineteen", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"}, and then allow the "fit detection" step to combine the number-words for multiples of 10 with the single-digit number-words.