OP here: I accepted ruakh's answer as it pertains to my question, but I wanted to provide my own explanation for others that might stumble across this post trying to understand Duval's algorithm.
Problem:
Lexicographically least circular substring is the problem of finding
the rotation of a string possessing the lowest lexicographical order
of all such rotations. For example, the lexicographically minimal
rotation of "bbaaccaadd" would be "aaccaaddbb".
Solution:
A O(n) time algorithm was proposed by Jean Pierre Duval (1983).
Given two indices i
and j
, Duval's algorithm compares string segments of length j - i
starting at i
and j
(called a "duel"). If index + j - i
is greater than the length of the string, the segment is formed by wrapping around.
For example, consider s = "baabbaba", i = 5 and j = 7. Since j - i = 2, the first segment starting at i = 5 is "ab". The second segment starting at j = 7 is constructed by wrapping around, and is also "ab".
If the strings are lexicographically equal, like in the above example, we choose the one starting at i as the winner, which is i = 5.
The above process repeated until we have a single winner. If the input string is of odd length, the last character wins without a comparison in the first iteration.
Time complexity:
The first iteration compares n strings each of length 1 (n/2 comparisons), the second iteration may compare n/2 strings of length 2 (n/2 comparisons), and so on, until the i-th iteration compares 2 strings of length n/2 (n/2 comparisons). Since the number of winners is halved each time, the height of the recursion tree is log(n), thus giving us a O(n log(n)) algorithm. For small n, this is approximately O(n).
Space complexity is O(n) too, since in the first iteration, we have to store n/2 winners, second iteration n/4 winners, and so on. (Wikipedia claims this algorithm uses constant space, I don't understand how).
Here's a Scala implementation; feel free to convert to your favorite programming language.
def lexicographicallyMinRotation(s: String): String = {
@tailrec
def duel(winners: Seq[Int]): String = {
if (winners.size == 1) s"${s.slice(winners.head, s.length)}${s.take(winners.head)}"
else {
val newWinners: Seq[Int] = winners
.sliding(2, 2)
.map {
case Seq(x, y) =>
val range = y - x
Seq(x, y)
.map { i =>
val segment = if (s.isDefinedAt(i + range - 1)) s.slice(i, i + range)
else s"${s.slice(i, s.length)}${s.take(s.length - i)}"
(i, segment)
}
.reduce((a, b) => if (a._2 <= b._2) a else b)
._1
case xs => xs.head
}
.toSeq
duel(newWinners)
}
}
duel(s.indices)
}