I'm working on a regression algorithm, in this case k-NearestNeighbors to predict a certain price of a product.
So I have a Training set which has only one categorical feature with 4 possible values. I've dealt with it using a one-to-k categorical encoding scheme which means now I have 3 more columns in my Pandas DataFrame with a 0/1 depending the value present.
The other features in the DataFrame are mostly distances like latitud - longitude for locations and prices, all numerical.
Should I standardize (Gaussian distribution with zero mean and unit variance) and normalize before or after the categorical encoding?
I'm thinking it might be benefitial to normalize after encoding so that every feature is to the estimator as important as every other when measuring distances between neighbors but I'm not really sure.