pyspark replace all values in dataframe with another values
Asked Answered
I

4

8

I have 500 columns in my pyspark data frame...Some are of string type,some int and some boolean(100 boolean columns ). Now, all the boolean columns have two distinct levels - Yes and No and I want to convert those into 1/0

For string I have three values- passed, failed and null. How do I replace those nulls with 0? fillna(0) works only with integers

 c1| c2 |    c3 |c4|c5..... |c500
yes| yes|passed |45....
No | Yes|failed |452....
Yes|No  |None   |32............

when I do

df.replace(yes,1)

I get following error:

ValueError: Mixed type replacements are not supported
Imbibition answered 1/10, 2018 at 20:23 Comment(0)
O
9

For string I have three values- passed, failed and null. How do I replace those nulls with 0? fillna(0) works only with integers

First, import when and lit

from pyspark.sql.functions import when, lit

Assuming your DataFrame has these columns

# Reconstructing my DataFrame based on your assumptions
# cols are Columns in the DataFrame
cols = ['name', 'age', 'col_with_string']

# Similarly the values
vals = [
     ('James', 18, 'passed'),
     ('Smith', 15, 'passed'),
     ('Albie', 32, 'failed'),
     ('Stacy', 33, None),
     ('Morgan', 11, None),
     ('Dwight', 12, None),
     ('Steve', 16, 'passed'), 
     ('Shroud', 22, 'passed'),
     ('Faze', 11,'failed'),
     ('Simple', 13, None)
]

# This will create a DataFrame using 'cols' and 'vals'
# spark is an object of SparkSession
df = spark.createDataFrame(vals, cols)

# We have the following DataFrame
df.show()

+------+---+---------------+
|  name|age|col_with_string|
+------+---+---------------+
| James| 18|         passed|
| Smith| 15|         passed|
| Albie| 32|         failed|
| Stacy| 33|           null|
|Morgan| 11|           null|
|Dwight| 12|           null|
| Steve| 16|         passed|
|Shroud| 22|         passed|
|  Faze| 11|         failed|
|Simple| 13|           null|
+------+---+---------------+

You can use:

  • withColumn() - To specify the column you want use.
  • isNull() - A filter that evaluates to true iff the attribute evaluates to null
  • lit() - creates a column for literals
  • when(), otherwise() - is used to check the condition with respect to the column

I can replace the values having null with 0

df = df.withColumn('col_with_string', when(df.col_with_string.isNull(), 
lit('0')).otherwise(df.col_with_string))

# We have replaced nulls with a '0'
df.show()

+------+---+---------------+
|  name|age|col_with_string|
+------+---+---------------+
| James| 18|         passed|
| Smith| 15|         passed|
| Albie| 32|         failed|
| Stacy| 33|              0|
|Morgan| 11|              0|
|Dwight| 12|              0|
| Steve| 16|         passed|
|Shroud| 22|         passed|
|  Faze| 11|         failed|
|Simple| 13|              0|
+------+---+---------------+

Part 1 of your question: Yes/No boolean values - you mentioned that, there are 100 columns of Boolean's. For this, I generally reconstruct the table with updated values or create a UDF returns 1 or 0 for Yes or No.

I am adding two more columns can_vote and can_lotto to the DataFrame (df)

df = df.withColumn("can_vote", col('Age') >= 18)
df = df.withColumn("can_lotto", col('Age') > 16) 

# Updated DataFrame will be
df.show()

+------+---+---------------+--------+---------+
|  name|age|col_with_string|can_vote|can_lotto|
+------+---+---------------+--------+---------+
| James| 18|         passed|    true|     true|
| Smith| 15|         passed|   false|    false|
| Albie| 32|         failed|    true|     true|
| Stacy| 33|              0|    true|     true|
|Morgan| 11|              0|   false|    false|
|Dwight| 12|              0|   false|    false|
| Steve| 16|         passed|   false|    false|
|Shroud| 22|         passed|    true|     true|
|  Faze| 11|         failed|   false|    false|
|Simple| 13|              0|   false|    false|
+------+---+---------------+--------+---------+

Assuming you have similar columns to can_vote and can_lotto (boolean values being Yes/No)

You can use the following line of code to fetch the columns in the DataFrame having boolean type

col_with_bool = [item[0] for item in df.dtypes if item[1].startswith('boolean')]

This returns a list

['can_vote', 'can_lotto']

You can create a UDF and iterate for each column in this type of list, lit each of the columns using 1 (Yes) or 0 (No).

For reference, refer to the following links

Oneman answered 2/10, 2018 at 19:16 Comment(0)
D
1

I tried to replicate you issue with the below data:

df_test=pd.DataFrame([['yes','pass',1.2],['No','pass',34],['yes',None,0.4],[0,1,'No'],['No',1,True],['NO','YES',1]])

then I just use:

df_test.replace('yes',1)
Difficulty answered 1/10, 2018 at 20:55 Comment(2)
I don't get any error but not theoutput. I am using pysparkImbibition
I think you're not seeing output since theres no collect() or show(); try above w/ either of those on the end or just do df2 = df_test.replace('yes', 1) then df2.show()Cauliflower
H
1

You should try using df.na.fill() but making the distinction between columns in the arguments of the function fill.

You would have something like :

df_test.na.fill({"value":"","c4":0}).show()
Hardesty answered 2/10, 2018 at 7:12 Comment(0)
L
-2

You can use Koalas to do Pandas like operations in spark. However, you need to respect the schema of a give dataframe. Using Koalas you could do the following:

df = df.replace('yes','1')

Once you replaces all strings to digits you can cast the column to int. If you want to replace certain empty values with NaNs I can recommend doing the following:

df = df .replace(['?'], None) 
Linwoodlinz answered 14/2, 2020 at 14:30 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.