I'd begin by picking a slightly better z = a^(m+2)b^(m+1)c^(m), where m is the pumping length. This string is clearly in the language and its length is greater than or equal to m. So, assuming the language is a CFL, the pumping lemma applies to it. Now, since you know that |vwx| <= m and that |vx| > 0, you also know that vwx must consist of (1) only a's, (2) some a's and some b's, (3) only b's, (4) some b's and some c's, or (5) only c's.
Deal with each case individually. I'll do the first two cases for you.
Case 1: This means that vx is a^(s) for some s > 0, since the lemma tells us |vx| > 0. Now suppose you take i = 0. Then the lemma tells us that z' = uv^(0)wx^(0)y should still belong to the language. However, z' is of the form a^(m+2-s)b^(m+1)c^(m) and, since s > 0, violates the condition that the number of a's must be strictly greater than the number of b's. Thus z' is not in the language, and this case fails to pump.
Case 2: This means that vx is a^(s)b^(t) for some s,t such that s+t > 0. Suppose, again, you take i = 0. Then z' is of the form a^(m+2-s)b^(m+1-t)c^(m). If t is positive, then the condition that the number of b's be strictly greater than the number of c's is violated. If t is zero, s must be positive, in which case we degenerate to case 1. Thus z' is not in the language, and this case fails to pump.
For dealing with the other cases, remember that you can pick a different pumping exponent i for each one.
Edit: (From past discussion on this question, I had decided to show the other three cases.)
Case 3: This means that vx is b^(s) for some s > 0. Take i = 0. Then z' is of the form a^(m+2)b^(m+1-s)c^(m). Since s is positive, this violates the condition that the number of b's be strictly greater than the number of c's. So z' is not in the language and this case fails to pump. (You could also take i equal to anything but 1 to show that this case fails to pump.)
Case 4: This means that vx is b^(s)c^(t) for some s,t such that s+t > 0. Take i = 2. Then z' is of the form a^(m+2)b^(m+1+s)c^(m+t). If s is nonzero, then the condition that the number of a's be strictly greater than the number of b's is violated. If s is zero, then t must be nonzero, in which case the condition that the number of b's be strictly greater than the number of c's is violated. So z' is not in the language and this case also fails to pump.
Case 5: This means that vx is c^(s) for some s > 0. Take i = 2. Then z' is of the form a^(m+2)b^(m+1)c^(m+s). Since s is positive, the condition that the number of b's be strictly greater than the number of c's is violated. So z' is not in the language and this case fails to pump.
Since all five cases fail to pump, the Pumping Lemma tells us that this language is not context-free.