I have an image that I found contours on with skimage.measure.find_contours()
but now I want to create a mask for the pixels fully outside the largest closed contour. Any idea how to do this?
Modifying the example in the documentation:
import numpy as np
import matplotlib.pyplot as plt
from skimage import measure
# Construct some test data
x, y = np.ogrid[-np.pi:np.pi:100j, -np.pi:np.pi:100j]
r = np.sin(np.exp((np.sin(x)**2 + np.cos(y)**2)))
# Find contours at a constant value of 0.8
contours = measure.find_contours(r, 0.8)
# Select the largest contiguous contour
contour = sorted(contours, key=lambda x: len(x))[-1]
# Display the image and plot the contour
fig, ax = plt.subplots()
ax.imshow(r, interpolation='nearest', cmap=plt.cm.gray)
X, Y = ax.get_xlim(), ax.get_ylim()
ax.step(contour.T[1], contour.T[0], linewidth=2, c='r')
ax.set_xlim(X), ax.set_ylim(Y)
plt.show()
Here is the contour in red:
But if you zoom in, notice the contour is not at the resolution of the pixels.
How can I create an image of the same dimensions as the original with the pixels fully outside (i.e. not crossed by the contour line) masked? E.g.
from numpy import ma
masked_image = ma.array(r.copy(), mask=False)
masked_image.mask[pixels_outside_contour] = True
Thanks!