I read the paper and googled as well if there is any good example of the learning method(or more likely learning procedure)
For word2vec, suppose there is corpus sentence
I go to school with lunch box that my mother wrapped every morning
Then with window size 2, it will try to obtain the vector for 'school' by using surrounding words
['go', 'to', 'with', 'lunch']
Now, FastText says that it uses the subword to obtain the vector, so it is definitely use n gram subword, for example with n=3,
['sc', 'sch', 'cho', 'hoo', 'ool', 'school']
Up to here, I understood. But it is not clear that if the other words are being used for learning for 'school'. I can only guess that other surrounding words are used as well like the word2vec, since the paper mentions
=> the terms Wc and Wt are both used in functions
where Wc is context word and Wt is word at sequence t.
However, it is not clear that how FastText learns the vectors for word.
.
.
Please clearly explain how FastText learning process goes in procedure?
.
.
More precisely I want to know that if FastText also follows the same procedure as Word2Vec while it learns the n-gram characterized subword in addition. Or only n-gram characterized subword with word being used?
How does it vectorize the subword at initial? etc