This code is benchmarking 3 different ways to compute the sum of the reciprocals of the elements of a double[]
.
- a
for
-loop - Java 8 streams
- the
colt
math library
What is the reason that the computation using a simple for-loop is ~400 times faster than the one using streams? (Or is there anything needs to be improved in the benchmarking code? Or a faster way of computing this using streams?)
Code :
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
import cern.colt.list.DoubleArrayList;
import cern.jet.stat.Descriptive;
import org.openjdk.jmh.annotations.*;
@State(Scope.Thread)
public class MyBenchmark {
public static double[] array;
static {
int num_of_elements = 100;
array = new double[num_of_elements];
for (int i = 0; i < num_of_elements; i++) {
array[i] = i+1;
}
}
@Benchmark
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public void testInversionSumForLoop(){
double result = 0;
for (int i = 0; i < array.length; i++) {
result += 1.0/array[i];
}
}
@Benchmark
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public void testInversionSumUsingStreams(){
double result = 0;
result = Arrays.stream(array).map(d -> 1/d).sum();
}
@Benchmark
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public void testInversionSumUsingCernColt(){
double result = Descriptive.sumOfInversions(new DoubleArrayList(array), 0, array.length-1);
}
}
Results:
/**
* Results
* Benchmark Mode Cnt Score Error Units
* MyBenchmark.testInversionSumForLoop avgt 200 1.647 ± 0.155 ns/op
* MyBenchmark.testInversionSumUsingCernColt avgt 200 603.254 ± 22.199 ns/op
* MyBenchmark.testInversionSumUsingStreams avgt 200 645.895 ± 20.833 ns/o
*/
Update: these results show Blackhome.consume or return is necessary to avoid jvm optimization.
/**
* Updated results after adding Blackhole.consume
* Benchmark Mode Cnt Score Error Units
* MyBenchmark.testInversionSumForLoop avgt 200 525.498 ± 10.458 ns/op
* MyBenchmark.testInversionSumUsingCernColt avgt 200 517.930 ± 2.080 ns/op
* MyBenchmark.testInversionSumUsingStreams avgt 200 582.103 ± 3.261 ns/op
*/
oracle jdk version "1.8.0_181", Darwin Kernel Version 17.7.0
loop
case. You need to "consume" result either by callingBlackhole.consume
or by simply addingreturn result;
at the end of benchmark method. – Cruciate