Is this project to develop a "framework" that will allow others to hook different functions in different binaries? Or is it just that you need to hook this specific program that you have?
First, let's suppose you want the second thing, you just have a function in a binary that you want to hook, programmatically and reliably. The main problem with doing this universally is that doing this reliably is a very tough game, but if you are willing to make some compromises, then it's definitely doable. Also let's assume this is x86 thing.
If you want to hook a function, there are several options how to do it. What Detours does is inline patching. They have a nice overview of how it works in a Research PDF document. The basic idea is that you have a function, e.g.
00E32BCE /$ 8BFF MOV EDI,EDI
00E32BD0 |. 55 PUSH EBP
00E32BD1 |. 8BEC MOV EBP,ESP
00E32BD3 |. 83EC 10 SUB ESP,10
00E32BD6 |. A1 9849E300 MOV EAX,DWORD PTR DS:[E34998]
...
...
Now you replace the beginning of the function with a CALL or JMP to your function and save the original bytes that you overwrote with the patch somewhere:
00E32BCE /$ E9 XXXXXXXX JMP MyHook
00E32BD3 |. 83EC 10 SUB ESP,10
00E32BD6 |. A1 9849E300 MOV EAX,DWORD PTR DS:[E34998]
(Note that I overwrote 5 bytes.) Now your function gets called with the same parameters and same calling convention as the original function. If your function wants to call the original one (but it doesn't have to), you create a "trampoline", that 1) runs the original instructions that were overwritten 2) jmps to the rest of the original function:
Trampoline:
MOV EDI,EDI
PUSH EBP
MOV EBP,ESP
JMP 00E32BD3
And that's it, you just need to construct the trampoline function in runtime by emitting processor instructions. The hard part of this process is to get it working reliably, for any function, for any calling convention and for different OS/platforms. One of the issues is that if the 5 bytes that you want to overwrite ends in a middle of an instruction. To detect "ends of instructions" you would basically need to include a disassembler, because there can be any instruction at the beginning of the function. Or when the function is itself shorter than 5 bytes (a function that always returns 0 can be written as XOR EAX,EAX; RETN
which is just 3 bytes).
Most current compilers/assemblers produce a 5-byte long function prolog, exactly for this purpose, hooking. See that MOV EDI, EDI
? If you wonder, "why the hell do they move edi to edi? that doesn't do anything!?" you are absolutely correct, but this is the purpose of the prolog, to be exactly 5-bytes long (not ending in a middle of an instruction). Note that the disassembly example is not something I made up, it's calc.exe on Windows Vista.
The rest of the hook implementation is just technical details, but they can bring you many hours of pain, because that's the hardest part. Also the behaviour you described in your question:
void MyInstallRules(void)
{
if(PreHook() == block) // <-- First a 'pre' hook which can block the function
return;
int * val = InstallRules(); // <-- Call original function
PostHook(val); // <-- Call post hook, if interest of original functions return value
}
seems worse than what I described (and what Detours does), for example you might want to "not call the original" but return some different value. Or call the original function twice. Instead, let your hook handler decide whether and where it will call the original function. Also then you don't need two handler functions for a hook.
If you don't have enough knowledge about the technologies you need for this (mostly assembly), or don't know how to do the hooking, I suggest you study what Detours does. Hook your own binary and take a debugger (OllyDbg for example) to see at assembly level what it exactly did, what instructions were placed and where. Also this tutorial might come in handy.
Anyway, if your task is to hook some functions in a specific program, then this is doable and if you have any trouble, just ask here again. Basically you can do a lot of assumptions (like the function prologs or used conventions) that will make your task much easier.
If you want to create some reliable hooking framework, then still is a completely different story and you should first begin by creating simple hooks for some simple apps.
Also note that this technique is not OS specific, it's the same on all x86 platforms, it will work on both Linux and Windows. What is OS specific is that you will probably have to change memory protection of the code ("unlock" it, so you can write to it), which is done with mprotect
on Linux and with VirtualProtect
on Windows. Also the calling conventions are different, that that's what you can solve by using the correct syntax in your compiler.
Another trouble is "DLL injection" (on Linux it will probably be called "shared library injection" but the term DLL injection is widely known). You need to put your code (that performs the hook) into the program. My suggestion is that if it's possible, just use LD_PRELOAD environment variable, in which you can specify a library that will be loaded into the program just before it's run. This has been described in SO many times, like here: What is the LD_PRELOAD trick?. If you must do this in runtime, I'm afraid you will need to get with gdb or ptrace, which in my opinion is quite hard (at least the ptrace thing) to do. However you can read for example this article on codeproject or this ptrace tutorial.
I also found some nice resources:
Also one other point: This "inline patching" is not the only way to do this. There are even simpler ways, e.g. if the function is virtual or if it's a library exported function, you can skip all the assembly/disassembly/JMP thing and simply replace the pointer to that function (either in the table of virtual functions or in the exported symbols table).