I was trying a code for feature matching which uses the function SURF(). Upon execution it gives an error saying "AttributeError: 'module' object has no attribute 'SURF'".
How can I download this module for Python (Windows) and fix this error?
I was trying a code for feature matching which uses the function SURF(). Upon execution it gives an error saying "AttributeError: 'module' object has no attribute 'SURF'".
How can I download this module for Python (Windows) and fix this error?
You can try ORB (Oriented FAST and Rotated BRIEF) as an alternate to SURF in open cv. It almost works as good as SURF and SIFT and it's free unlike SIFT and SURF which are patented and can't be used commercially.
You can read about it more in opencv-python documentation
here
Here's the sample code for your ease
import cv2
from matplotlib import pyplot as plt
img1 = cv2.imread('text.png',cv2.COLOR_BGR2GRAY) # queryImage
img2 = cv2.imread('original.png',cv2.COLOR_BGR2GRAY) # trainImage
# Initiate SIFT detector
orb = cv2.ORB_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = orb.detectAndCompute(img1,None)
kp2, des2 = orb.detectAndCompute(img2,None)
# create BFMatcher object
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
# Match descriptors.
matches = bf.match(des1,des2)
# Sort them in the order of their distance.
matches = sorted(matches, key = lambda x:x.distance)
# Draw first 10 matches.
img3 = cv2.drawMatches(img1,kp1,img2,kp2,matches[:10],None, flags=2)
plt.imshow(img3),plt.show()
At first
pip install opencv-contrib-python
and then use this hack to create sift object
sift = cv2.xfeatures2d.SIFT_create()
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('simple.jpg',0)
# Initiate FAST object with default values
fast = cv.FastFeatureDetector_create()
# find and draw the keypoints
kp = fast.detect(img,None)
img2 = cv.drawKeypoints(img, kp, None, color=(255,0,0))
# Print all default params
print( "Threshold: {}".format(fast.getThreshold()) )
print( "nonmaxSuppression:{}".format(fast.getNonmaxSuppression()) )
print( "neighborhood: {}".format(fast.getType()) )
print( "Total Keypoints with nonmaxSuppression: {}".format(len(kp)) )
cv.imwrite('fast_true.png',img2)
#Disable nonmaxSuppression
fast.setNonmaxSuppression(0)
kp = fast.detect(img,None)
print( "Total Keypoints without nonmaxSuppression: {}".format(len(kp)) )
img3 = cv.drawKeypoints(img, kp, None, color=(255,0,0))
cv.imwrite('fast_false.png',img3)
According to this source SIFT patent expired. SIFT should be implemented in the main opencv repository by now. At least cv.SIFT_create()
init is working for me. I have opencv version 4.5.5
.
Example use with possible combination with other descriptors or detectors(alternative to detectAndCompute()
function)
import cv2 as cv
MAX_FEATURES = 5500
GOOD_MATCH_PERCENT = 0.03
def find_matches(im1, im2, detector_type: str, descriptor_type: str):
# Convert images to grayscale
im1Gray = cv.cvtColor(im1, cv.COLOR_BGR2GRAY)
im2Gray = cv.cvtColor(im2, cv.COLOR_BGR2GRAY)
# init detector
if detector_type == 'sift':
detector = cv.SIFT_create(MAX_FEATURES)
elif detector_type == 'fast':
detector = cv.FastFeatureDetector_create()
# ... ORB etc.
# init descriptor
if descriptor_type == 'sift':
descriptor = cv.SIFT_create(MAX_FEATURES)
keypoints1 = detector.detect(im1Gray, None)
keypoints2 = detector.detect(im2Gray, None)
# find descriptors with descriptor SIFT
keypoints1, descriptors1 = descriptor.compute(im1Gray, keypoints1)
keypoints2, descriptors2 = descriptor.compute(im2Gray, keypoints2)
# BFMatcher object
matcher = cv.BFMatcher(cv.NORM_L1, crossCheck=True)
matches = list(matcher.match(descriptors1, descriptors2))
# Sort matches by score
matches.sort(key=lambda x: x.distance, reverse=False)
# Remove not so good matches
numGoodMatches = int(len(matches) * GOOD_MATCH_PERCENT)
matches = matches[:numGoodMatches]
# Draw top matches
imMatches = cv.drawMatches(
im1, keypoints1, im2, keypoints2, matches, None)
cv.imwrite("matches.jpg", imMatches)
© 2022 - 2024 — McMap. All rights reserved.