Spark 1.2x versions do not provide with a "item-similarity based recommender" like the ones present in Mahout.
However, MLlib currently supports model-based collaborative filtering, where users and products are described by a small set of latent factors {Understand the use case for implicit (views, clicks) and explicit feedback (ratings) while constructing a user-item matrix.}
MLlib uses the alternating least squares (ALS) algorithm [can be considered similar to the SVD algorithm] to learn these latent factors.
If you need to construct purely an item-similarity based recommender, I would recommend this:
- Represent all items by a feature vector
- Construct an item-item similarity matrix by computing a similarity metric (such as cosine) with each items pair
- Use this item similarity matrix to find similar items for users
Since similarity matrices do not scale well, (imagine how your similarity matrix would grow if you had 100 items vs 10000 items) this read on DIMSUM might be helpful if you're planning to implement it on a large number of items:
https://databricks.com/blog/2014/10/20/efficient-similarity-algorithm-now-in-spark-twitter.html