Carefully designed immutability avoids unecessary updating
Immutable data structures are only an efficiency problem if they're constantly changing, or you build them up the wrong way. For example, continually appending more to the end of a growing list is quadratic, whereas concatenating a list of lists is linear. If you think carefully, you can usually build up your structure in a sensible way, and lazy evaluation is your friend - hand out a promise to work it out and stop worrying.
Blindly trying to replicate an imperative algorithm can be ineffecient, but you're mistaken in your assertion that functional programming has to be asymptotically bad here.
Case study: pure functional GEP: Karva notation in linear time
I'll stick with your case study of parsing Karva notation for GEP. (
I've played with this solution more fully in this answer.)
Here's a fairly clean pure functional solution to the problem. I'll take the opportunity to name drop some good general recursion schemes along the way.
Code
(Importing Data.Tree
supplies data Tree a = Node {rootLabel :: a, subForest :: Forest a}
where type Forest a = [Tree a]
.)
import Data.Tree
import Data.Tree.Pretty -- from the pretty-tree package for visualising trees
arity :: Char -> Int
arity c
| c `elem` "+*-/" = 2
| c `elem` "Q" = 1
| otherwise = 0
A hylomorphism is the composition of an anamorphism (build up, unfoldr) and a catamorphism (combine, foldr).
These terms are introduced to the FP community in the seminal paper Functional Programming with Bananas, Lenses and Barbed wire.
We're going to pull the levels out (ana/unfold) and combine them back together (cata/fold).
hylomorphism :: b -> (a -> b -> b) -> (c -> (a, c)) -> (c -> Bool) -> c -> b
hylomorphism base combine pullout stop seed = hylo seed where
hylo s | stop s = base
| otherwise = combine new (hylo s')
where (new,s') = pullout s
To pull out a level, we use the total arity from the previous level to find where to split off this new level, and pass on the total arity for this one ready for next time:
pullLevel :: (Int,String) -> (String,(Int,String))
pullLevel (n,cs) = (level,(total, cs')) where
(level, cs') = splitAt n cs
total = sum $ map arity level
To combine a level (as a String) with the level below (that's already a Forest), we just pull off the number of trees that each character needs.
combineLevel :: String -> Forest Char -> Forest Char
combineLevel "" [] = []
combineLevel (c:cs) levelBelow = Node c subforest : combineLevel cs theRest
where (subforest,theRest) = splitAt (arity c) levelBelow
Now we can parse the Karva using a hylomorphism. Note that we seed it with a total arity from outside the string of 1
, since there's only one node at the root level. Correspondingly we apply head
to the result to get this singleton back out after the hylomorphism.
karvaToTree :: String -> Tree Char
karvaToTree cs = let
zero (n,_) = n == 0
in head $ hylomorphism [] combineLevel pullLevel zero (1,cs)
Linear Time
There's no exponential blowup, nor repeated O(log(n)) lookups or expensive modifications, so we shouldn't be in too much trouble.
arity
is O(1
)
splitAt part
is O(part
)
pullLevel (part,cs)
is O(part
) for grab using splitAt
to get level
, plus O(part
) for the map arity level
, so O(part
)
combineLevel (c:cs)
is O(arity c
) for the splitAt
, and O(sum $ map arity cs
) for the recursive call
hylomorphism [] combineLevel pullLevel zero (1,cs)
- makes a
pullLevel
call for each level, so the total pullLevel
cost is O(sum
parts) = O(n)
- makes a
combineLevel
call for each level, so the total combineLevel
cost is O(sum $ map arity
levels) = O(n), since the total arity of the entire input is bound by n for valid strings.
- makes O(#levels) calls to
zero
(which is O(1
)), and #levels
is bound by n
, so that's below O(n) too
Hence karvaToTree
is linear in the length of the input.
I think that puts to rest the assertion that you needed to use mutability to get a linear algorithm here.
Demo
Let's have a draw of the results (because Tree is so full of syntax it's hard to read the output!). You have to cabal install pretty-tree
to get Data.Tree.Pretty
.
see :: Tree Char -> IO ()
see = putStrLn.drawVerticalTree.fmap (:"")
ghci> karvaToTree "Q/a*+b-cbabaccbac"
Node {rootLabel = 'Q', subForest = [Node {rootLabel = '/', subForest = [Node {rootLabel = 'a', subForest = []},Node {rootLabel = '*', subForest = [Node {rootLabel = '+', subForest = [Node {rootLabel = '-', subForest = [Node {rootLabel = 'b', subForest = []},Node {rootLabel = 'a', subForest = []}]},Node {rootLabel = 'c', subForest = []}]},Node {rootLabel = 'b', subForest = []}]}]}]}
ghci> see $ karvaToTree "Q/a*+b-cbabaccbac"
Q
|
/
|
------
/ \
a *
|
-----
/ \
+ b
|
----
/ \
- c
|
--
/ \
b a
which matches the output expected from this tutorial where I found the example: