One of the best ways (in SpriteKit/GameplayKit) to get the kind of behavior you're after is to recognize that path planning and path following need not be the same operation. GameplayKit provides tools for both — GKObstacleGraph
is good for planning and GKAgent
is good for following a planned path — and they work best when you combine the strengths of each.
(It can be a bit misleading that GKAgent
provides obstacle avoidance; don't think of this in the same way as finding a route around obstacles, more like reacting to sudden obstacles in your way.)
To put it another way, GKObstacleGraph
and GKAgent
are like the difference between navigating with a map and safely driving a car. The former is where you decide to take CA-85 and US-101 instead of I-280. (And maybe reevaluate your decision once in awhile — say, to pick a different set of roads around a traffic jam.) The latter is where you, continuously moment-to-moment, change lanes, avoid potholes, pass slower vehicles, slow down for heavy traffic, etc.
In Apple's DemoBots sample code, they break this out into two steps:
Use GKObstacleGraph
to do high level path planning. That is, when the bad guys are "here" and the hero is "way over there", and there are some walls in between, select a series of waypoints that roughly approximates a route from here to there.
Use GKAgent
behaviors to make the character roughly follow that path while also reacting to other factors (like making the bad guys not step on each other and giving them vaguely realistic movement curves instead of simply following the lines between waypoints).
You can find most of the relevant stuff behind this in TaskBotBehavior.swift
in that sample code — start from addGoalsToFollowPath
and look at both the places that gets called and the calls it makes.
As for the "moving forever" and "angular speed" issues...
The agent simulation is a weird mix of a motivation analogy (i.e. the agent does what's needed to move it toward where it "wants" within constraints) and a physics system (i.e. those movements are modeled like forces/impulses). If you take away an agent's goals, it doesn't know that it needs to stop — instead, you need to give it a goal of stopping. (That is, a movement speed goal of zero.) There might be a better model than what Apple's chosen here — file bugs if you have suggestions for design improvements.
Angular speed is trickier. The notion of agents' intrinsic physical constraints being sort of analogous to, say, vehicles on land or boats at sea is pretty well baked into the system. It can't really handle things like space fighters that have to reorient to vector their thrust, or walking creatures that can just as happily walk sideways or backwards as forward — at least, not on its own. You can get some mileage toward changing the "feel" of agent movement with the maxAcceleration
property, but you're limited by the fact that said property covers both linear and angular acceleration.
Remember, though, that the interface between what the agent system "wants" and what "actually happens" in your game world is under your control. The easiest way to implement GKAgentDelegate
is to just sync the velocity
and position
properties of the agent and the sprite that it represents. However, you don't have to do it that way — you could calculate a different force/impulse and apply it to your sprite.