When requesting Queue.Synchonized
you get a SynchronizedQueue
in return which uses a lock
very minimally around calls to Enqueue
and Dequeue
on an inner queue. Therefore, the performance should be the same as using a Queue
and managing locking yourself for Enqueue
and Dequeue
with your own lock
.
You are indeed imagining things - they should be the same.
Update
There is actually the fact that when using a SynchronizedQueue
you are adding a layer of indirection as you have to go through the wrapper methods to get to the inner queue which it is managing. If anything this should slow things down very fractionally as you've got an extra frame on the stack that needs to be managed for each call. God knows if in-lining cancels this out though. Whatever - it's minimal.
Update 2
I have now benchmarked this, and as predicted in my previous update:
"Queue.Synchronized" is slower than "Queue+lock"
I carried out a single-threaded test as they both use the same locking technique (i.e. lock
) so testing pure overhead in a "straight line" seems reasonable.
My benchmark produced the following results for a Release build:
Iterations :10,000,000
Queue+Lock :539.14ms
Queue+Lock :540.55ms
Queue+Lock :539.46ms
Queue+Lock :540.46ms
Queue+Lock :539.75ms
SynchonizedQueue:578.67ms
SynchonizedQueue:585.04ms
SynchonizedQueue:580.22ms
SynchonizedQueue:578.35ms
SynchonizedQueue:578.57ms
Using the following code:
private readonly object _syncObj = new object();
[Test]
public object measure_queue_locking_performance()
{
const int TestIterations = 5;
const int Iterations = (10 * 1000 * 1000);
Action<string, Action> time = (name, test) =>
{
for (int i = 0; i < TestIterations; i++)
{
TimeSpan elapsed = TimeTest(test, Iterations);
Console.WriteLine("{0}:{1:F2}ms", name, elapsed.TotalMilliseconds);
}
};
object itemOut, itemIn = new object();
Queue queue = new Queue();
Queue syncQueue = Queue.Synchronized(queue);
Action test1 = () =>
{
lock (_syncObj) queue.Enqueue(itemIn);
lock (_syncObj) itemOut = queue.Dequeue();
};
Action test2 = () =>
{
syncQueue.Enqueue(itemIn);
itemOut = syncQueue.Dequeue();
};
Console.WriteLine("Iterations:{0:0,0}\r\n", Iterations);
time("Queue+Lock", test1);
time("SynchonizedQueue", test2);
return itemOut;
}
[SuppressMessage("Microsoft.Reliability", "CA2001:AvoidCallingProblematicMethods", MessageId = "System.GC.Collect")]
private static TimeSpan TimeTest(Action action, int iterations)
{
Action gc = () =>
{
GC.Collect();
GC.WaitForFullGCComplete();
};
Action empty = () => { };
Stopwatch stopwatch1 = Stopwatch.StartNew();
for (int j = 0; j < iterations; j++)
{
empty();
}
TimeSpan loopElapsed = stopwatch1.Elapsed;
gc();
action(); //JIT
action(); //Optimize
Stopwatch stopwatch2 = Stopwatch.StartNew();
for (int j = 0; j < iterations; j++) action();
gc();
TimeSpan testElapsed = stopwatch2.Elapsed;
return (testElapsed - loopElapsed);
}