I have been working with the SURF feature detection example from the EMGU CV library.
So far it's working amazingly; I can detect matching objects between 2 given images but I have run into a problem in regards to when the images do not match.
I was looking for support from the forums but they are down from where I am. Would anyone know which parameters determine whether an image is a match or not. When I test with 2 images that are not a match, the code still proceeds as if there was a match and draws a blurred thick red line on a random location of the image even when there is not a match.
If there is no match I would wish to break from the code and not proceed further.
Appendix:
static void Run()
{
Image<Gray, Byte> modelImage = new Image<Gray, byte>("HatersGonnaHate.png");
Image<Gray, Byte> observedImage = new Image<Gray, byte>("box_in_scene.png");
Stopwatch watch;
HomographyMatrix homography = null;
SURFDetector surfCPU = new SURFDetector(500, false);
VectorOfKeyPoint modelKeyPoints;
VectorOfKeyPoint observedKeyPoints;
Matrix<int> indices;
Matrix<float> dist;
Matrix<byte> mask;
if (GpuInvoke.HasCuda)
{
GpuSURFDetector surfGPU = new GpuSURFDetector(surfCPU.SURFParams, 0.01f);
using (GpuImage<Gray, Byte> gpuModelImage = new GpuImage<Gray, byte>(modelImage))
//extract features from the object image
using (GpuMat<float> gpuModelKeyPoints = surfGPU.DetectKeyPointsRaw(gpuModelImage, null))
using (GpuMat<float> gpuModelDescriptors = surfGPU.ComputeDescriptorsRaw(gpuModelImage, null, gpuModelKeyPoints))
using (GpuBruteForceMatcher matcher = new GpuBruteForceMatcher(GpuBruteForceMatcher.DistanceType.L2))
{
modelKeyPoints = new VectorOfKeyPoint();
surfGPU.DownloadKeypoints(gpuModelKeyPoints, modelKeyPoints);
watch = Stopwatch.StartNew();
// extract features from the observed image
using (GpuImage<Gray, Byte> gpuObservedImage = new GpuImage<Gray, byte>(observedImage))
using (GpuMat<float> gpuObservedKeyPoints = surfGPU.DetectKeyPointsRaw(gpuObservedImage, null))
using (GpuMat<float> gpuObservedDescriptors = surfGPU.ComputeDescriptorsRaw(gpuObservedImage, null, gpuObservedKeyPoints))
using (GpuMat<int> gpuMatchIndices = new GpuMat<int>(gpuObservedDescriptors.Size.Height, 2, 1))
using (GpuMat<float> gpuMatchDist = new GpuMat<float>(gpuMatchIndices.Size, 1))
{
observedKeyPoints = new VectorOfKeyPoint();
surfGPU.DownloadKeypoints(gpuObservedKeyPoints, observedKeyPoints);
matcher.KnnMatch(gpuObservedDescriptors, gpuModelDescriptors, gpuMatchIndices, gpuMatchDist, 2, null);
indices = new Matrix<int>(gpuMatchIndices.Size);
dist = new Matrix<float>(indices.Size);
gpuMatchIndices.Download(indices);
gpuMatchDist.Download(dist);
mask = new Matrix<byte>(dist.Rows, 1);
mask.SetValue(255);
Features2DTracker.VoteForUniqueness(dist, 0.8, mask);
int nonZeroCount = CvInvoke.cvCountNonZero(mask);
if (nonZeroCount >= 4)
{
nonZeroCount = Features2DTracker.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
if (nonZeroCount >= 4)
homography = Features2DTracker.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints, observedKeyPoints, indices, mask, 3);
}
watch.Stop();
}
}
}
else
{
//extract features from the object image
modelKeyPoints = surfCPU.DetectKeyPointsRaw(modelImage, null);
//MKeyPoint[] kpts = modelKeyPoints.ToArray();
Matrix<float> modelDescriptors = surfCPU.ComputeDescriptorsRaw(modelImage, null, modelKeyPoints);
watch = Stopwatch.StartNew();
// extract features from the observed image
observedKeyPoints = surfCPU.DetectKeyPointsRaw(observedImage, null);
Matrix<float> observedDescriptors = surfCPU.ComputeDescriptorsRaw(observedImage, null, observedKeyPoints);
BruteForceMatcher matcher = new BruteForceMatcher(BruteForceMatcher.DistanceType.L2F32);
matcher.Add(modelDescriptors);
int k = 2;
indices = new Matrix<int>(observedDescriptors.Rows, k);
dist = new Matrix<float>(observedDescriptors.Rows, k);
matcher.KnnMatch(observedDescriptors, indices, dist, k, null);
mask = new Matrix<byte>(dist.Rows, 1);
mask.SetValue(255);
Features2DTracker.VoteForUniqueness(dist, 0.8, mask);
int nonZeroCount = CvInvoke.cvCountNonZero(mask);
if (nonZeroCount >= 4)
{
nonZeroCount = Features2DTracker.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
if (nonZeroCount >= 4)
homography = Features2DTracker.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints, observedKeyPoints, indices, mask, 3);
}
watch.Stop();
}
//Draw the matched keypoints
Image<Bgr, Byte> result = Features2DTracker.DrawMatches(modelImage, modelKeyPoints, observedImage, observedKeyPoints,
indices, new Bgr(255, 255, 255), new Bgr(255, 255, 255), mask, Features2DTracker.KeypointDrawType.NOT_DRAW_SINGLE_POINTS);
#region draw the projected region on the image
if (homography != null)
{ //draw a rectangle along the projected model
Rectangle rect = modelImage.ROI;
PointF[] pts = new PointF[] {
new PointF(rect.Left, rect.Bottom),
new PointF(rect.Right, rect.Bottom),
new PointF(rect.Right, rect.Top),
new PointF(rect.Left, rect.Top)};
homography.ProjectPoints(pts);
result.DrawPolyline(Array.ConvertAll<PointF, Point>(pts, Point.Round), true, new Bgr(Color.Red), 5);
}
#endregion
ImageViewer.Show(result, String.Format("Matched using {0} in {1} milliseconds", GpuInvoke.HasCuda ? "GPU" : "CPU", watch.ElapsedMilliseconds));
}
}
}
`
Features2DTracker.VoteForUniqueness(...)
. You're just changing the uniqueness threshold. – Halfpint