I have a 500K row spark DataFrame that lives in a parquet file. I'm using spark 2.0.0 and the SparkR
package inside Spark (RStudio and R 3.3.1), all running on a local machine with 4 cores and 8gb of RAM.
To facilitate construction of a dataset I can work on in R, I use the collect()
method to bring the spark DataFrame into R. Doing so takes about 3 minutes, which is far longer than it'd take to read an equivalently sized CSV file using the data.table
package.
Admittedly, the parquet file is compressed and the time needed for decompression could be part of the issue, but I've found other comments on the internet about the collect method being particularly slow, and little in the way of explanation.
I've tried the same operation in sparklyr, and it's much faster. Unfortunately, sparklyr doesn't have the ability to do date path inside joins and filters as easily as SparkR, and so I'm stuck using SparkR. In addition, I don't believe I can use both packages at the same time (i.e. run queries using SparkR calls, and then access those spark objects using sparklyr).
Does anyone have a similar experience, an explanation for the relative slowness of SparkR's collect() method, and/or any solutions?