If every independent value can take on the same value (e.g. seq(from = 0.0001, to = 1000, by = 0.1)
), we can approach this with much greater rigor and avoid the possibility of generating duplicates. First we create a masterFun
that is essentially a wrapper for all of the functions you want to define:
masterFun <- function(y) {
## y is a vector with 6 values
## y[1] -->> x
## y[2] -->> t
## y[3] -->> v
## y[4] -->> w
## y[5] -->> n
## y[6] -->> f
fA <- function(x, t) {x * t - 2*x}
fB <- function(v, x) {v - x^2}
fC <- function(x, w, t) {x - w*t - t*t}
fD <- function(n, f, t) {(n - f)/t}
## one can easily filter out negative
## results as @jdobres has done.
c(a = fA(y[1], y[2]), b = fB(y[3], y[1]),
c = fC(y[1], y[4], y[2]), d = fD(y[5], y[6], y[2]))
}
Now, using permuteSample
, which is capable of generating random permutations of a vector and subsequently applying any given user defined function to each permutation, from RcppAlgos
(I am the author), we have:
## Not technically the domain, but this variable name
## is concise and very descriptive
domain <- seq(from = 0.0001, to = 1000, by = 0.1)
library(RcppAlgos)
## number of variables ... x, t, v, w, n, f
## ||
## \/
permuteSample(domain, m = 6, repetition = TRUE,
n = 3, seed = 123, FUN = masterFun)
[[1]]
a b c d
218830.316100 -608541.146040 -310624.596670 -1.415869
[[2]]
a b c d
371023.322880 -482662.278860 -731052.643620 1.132836
[[3]]
a b c d
18512.60761001 -12521.71284001 -39722.27696002 -0.09118721
In short, the underlying algorithm is capable of generating the nth lexicographical result, which allows us to apply a mapping from 1 to "# of total permutations"
to the permutations themselves. For example, given the permutations of the vector 1:3
:
permuteGeneral(3, 3)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 1 3 2
[3,] 2 1 3
[4,] 2 3 1
[5,] 3 1 2
[6,] 3 2 1
We can easily generate the 2nd and the 5th permutation above without generating the first permutation or the first four permutations:
permuteSample(3, 3, sampleVec = c(2, 5))
[,1] [,2] [,3]
[1,] 1 3 2
[2,] 3 1 2
This allows us to have a more controlled and tangible grasp of our random samples as we can now think of them in a more familiar way (i.e. a random sample of numbers).
If you actually want to see which variables were used in the above calculation, we simply drop the FUN
argument:
permuteSample(domain, m = 6, repetition = TRUE, n = 3, seed = 123)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 780.7001 282.3001 951.5001 820.8001 289.1001 688.8001
[2,] 694.8001 536.0001 84.9001 829.2001 757.3001 150.1001
[3,] 114.7001 163.4001 634.4001 80.4001 327.2001 342.1001
resultsfinal <- ifelse(results > 0, results, NULL)
– Mischiefmaker