I'm trying to generate "crumpled" images using images obtained from a flatbed bed scanner.
By following the method described in the paper[Link] in the section 3.1. I've written the code generate the perturbed mesh but I don't know how to map this pixels from source image onto this mesh to form the perturbed image.
This is the code to generate the perturbed mesh.
import numpy as np
import matplotlib.pyplot as plt
mr = 88
mc = 68
xx = np.arange(mr-1, -1, -1)
yy = np.arange(0, mc, 1)
[Y, X] = np.meshgrid(xx, yy)
ms = np.transpose(np.asarray([X.flatten('F'), Y.flatten('F')]), (1,0))
perturbed_mesh = ms
nv = np.random.randint(20) - 1
for k in range(nv):
#Choosing one vertex randomly
vidx = np.random.randint(np.shape(ms)[0])
vtex = ms[vidx, :]
#Vector between all vertices and the selected one
xv = perturbed_mesh - vtex
#Random movement
mv = (np.random.rand(1,2) - 0.5)*20
hxv = np.zeros((np.shape(xv)[0], np.shape(xv)[1] +1) )
hxv[:, :-1] = xv
hmv = np.tile(np.append(mv, 0), (np.shape(xv)[0],1))
d = np.cross(hxv, hmv)
d = np.absolute(d[:, 2])
d = d / (np.linalg.norm(mv, ord=2))
wt = d
curve_type = np.random.rand(1)
if curve_type > 0.3:
alpha = np.random.rand(1) * 50 + 50
wt = alpha / (wt + alpha)
else:
alpha = np.random.rand(1) + 1
wt = 1 - (wt / 100 )**alpha
msmv = mv * np.expand_dims(wt, axis=1)
perturbed_mesh = perturbed_mesh + msmv
plt.scatter(perturbed_mesh[:, 0], perturbed_mesh[:, 1], c=np.arange(0, mr*mc))
plt.show()
This is how the perturbed mesh looks like:
This is the screenshot from the paper illustrating the synthetic image generation:
Sample source image for testing: https://i.sstatic.net/26KN4.jpg
I'm stuck with mapping the source image pixels onto the mesh. I'll be grateful if someone can help.
cv2.remap
with full image size grid.cv2.error: OpenCV(3.4.2) /io/opencv/modules/imgproc/src/imgwarp.cpp:1728: error: (-215:Assertion failed) dst.cols < 32767 && dst.rows < 32767 && src.cols < 32767 && src.rows < 32767 in function 'remap'
– Eighteenth