I'm using Processing to develop a navigation system for complex data and processes. As part of that I have gotten into graph layout pretty deeply. It's all fun and my opinions on layout algorithms are : force-directed is for sissies (just look at it scale...haha), eigenvector projection is cool, Sugiyama layers look good but fail fast on graphy graphs, and although I have relied on eigenvectors thus far, I need to minimize edge crossings to really get to the point of the data. I know, I know NP-complete etc.
I should add that I have some good success from applying xy boxing and using Sugiyama-like permutation to reduce edge crossings across rows and columns. Viz: graph (|V|=90,avg degree log|V|) can go from 11000 crossings -> 1500 (by boxed eigenvectors) -> 300 by alternating row and column permutations to reduce crossings.
But the local minima... whatever it is sticks around this mark, and the result is not as clear as it could be. My research into the lit suggests to me that I really want to use the planarization algorithm like what they do use for VLSI:
- Use BFS or something to make the maximal planar subgraph 1.a. Layout the planar subgraph nice-like
- Cleverly add outstanding edges to recover the original graph
Please reply with your thoughts on the fastest planarization algorithm, you are welcome to go into some depth about any specific optimizations you have had familiarity with.
Thanks so much!