Update 2020-12-11: Thanks @"Some programmer dude" for the suggestion in the comment.
My underlying problem is that our team is implementing a dynamic type storage engine. We allocate multiple char array[PAGE_SIZE] buffers with 16-aligned to store dynamic types of data (there is no fixed struct). For efficiency reasons, we cannot perform byte encoding or allocate additional space to use memcpy
.
Since the alignment has been determined (i.e., 16), the rest is to use the cast of pointer to access objects of the specified type, for example:
int main() {
// simulate our 16-aligned malloc
_Alignas(16) char buf[4096];
// store some dynamic data:
*((unsigned long *) buf) = 0xff07;
*(((double *) buf) + 2) = 1.618;
}
But our team disputes whether this operation is undefined behavior.
I have read many similar questions, such as
- Why does -Wcast-align not warn about cast from char* to int* on x86?
- How to cast char array to int at non-aligned position?
- C undefined behavior. Strict aliasing rule, or incorrect alignment?
- SEI CERT C C.S EXP36-C
But these are different from my interpretation of the C standard, I want to know if it’s my misunderstanding.
The main confusion is about the section 6.3.2.3 #7 of C11:
A pointer to an object type may be converted to a pointer to a different object type. If the resulting pointer is not correctly aligned 68) for the referenced type, the behavior is undefined.
68) In general, the concept ‘‘correctly aligned’’ is transitive: if a pointer to type A is correctly aligned for a pointer to type B, which in turn is correctly aligned for a pointer to type C, then a pointer to type A is correctly aligned for a pointer to type C.
Does the resulting pointer here refer to Pointer Object or Pointer Value?
In my opinion, I think the answer is the Pointer Object, but more answers seem to indicate the Pointer Value.
Interpretation A: Pointer Object
My thoughts are as follows: A pointer itself is an object. According to 6.2.5 #28, different pointer may have different representation and alignment requirements. Therefore, according to 6.3.2.3 #7, as long as two pointers have the same alignment, they can be safely converted without undefined behavior, but there is no guarantee that they can be dereferenced. Express this idea in a program:
#include <stdio.h>
int main() {
char buf[4096];
char *pc = buf;
if (_Alignof(char *) == _Alignof(int *)) {
// cast safely, because they have the same alignment requirement?
int *pi = (int *) pc;
printf("pi: %p\n", pi);
} else {
printf("char * and int * don't have the same alignment.\n");
}
}
Interpretation B: Pointer Value
However, if the C11 standard is talking about Pointer Value for referenced type rather than Pointer Object. The alignment check of the above code is meaningless. Express this idea in a program:
#include <stdio.h>
int main() {
char buf[4096];
char *pc = buf;
/*
* undefined behavior, because:
* align of char is 1
* align of int is 4
*
* and we don't know whether the `value` of pc is 4-aligned.
*/
int *pi = (int *) pc;
printf("pi: %p\n", pi);
}
Which interpretation is correct?
sizeof(int*) == sizeof(char*)
. Therefore all pointers will have the same alignment:_Alignof(int*) == _Alignof(char*)
as alignment is dependent on size. – Olibanumbuf[2]
then all bets are off. – Olibanumbuf
would only have an alignment requirement of 1, regardless of the size of the array. – PhenanthreneAlignments have an order from weaker to stronger or stricter alignments. Stricter alignments have larger alignment values. An address that satisfies an alignment requirement also satisfies any weaker valid alignment requirement.
– Olibanum[6.7.6 Alignment] Paragraph 5
is to what you are referring, what about it seems ambiguous? – Willtrudechar* x = 0x01;
Valid.int* y = (int*)x;
Not valid. The pointers x/y have the same alignment and you can assign to them. But assigning an illegal value is UB. Interpretation B is correct. – Olibanum