When you're looking for "low level" definitions, probably the only legitimate source is our old friend - the JLS. Though it does not give a clear definition in this case, the context in which it uses each term might be enough.
Dispatch
This term is indeed mentioned in procedures of determining which method to call.
15.12.2. Compile-Time Step 2: Determine Method Signature
The second step searches the type determined in the previous step for
member methods. This step uses the name of the method and the argument
expressions to locate methods that are both accessible and applicable,
that is, declarations that can be correctly invoked on the given
arguments.
There may be more than one such method, in which case the
most specific one is chosen. The descriptor (signature plus return
type) of the most specific method is the one used at run time to
perform the method dispatch. A method is applicable if it is
applicable by one of strict invocation
The elaboration on what is the "most specific" method is done in 15.12.2.5 Choosing the Most Specific Method.
As for "dynamic dispatch",
JLS 12.5. Creation of New Class Instances:
Unlike C++, the Java programming language does not specify altered
rules for method dispatch during the creation of a new class instance.
If methods are invoked that are overridden in subclasses in the object
being initialized, then these overriding methods are used, even before
the new object is completely initialized.
It includes
Example 12.5-2. Dynamic Dispatch During Instance Creation
class Super {
Super() {
printThree();
}
void printThree() {
System.out.println("three");
}
}
class Test extends Super {
int three = 3;
void printThree() {
System.out.println(three);
}
public static void main(String[] args) {
Test t = new Test();
t.printThree();
}
}
Output:
0
3
This happens because during the constructor call chain, Super
's constructor calls printThree
, but due to dynamic dispatch the method in Test
is called, and that is before the field is initialized.
Binding
This term is used in contexts of class member access.
Example 15.11.1-1. Static Binding for Field Access demonstrates early and late bindings. I will summarize the examples given there for the lazy of us:
class S {
int x = 0;
int z() { return x; }
}
class T extends S {
int x = 1;
int z() { return x; }
}
public class Test1 {
public static void main(String[] args) {
S s = new T();
System.out.println("s.x=" + s.x);
System.out.println("s.x=" + s.z());
}
}
Output:
s.x=0
s.x=1
Showing that the field uses "early binding", while the instance method uses "late binding":
This lack of dynamic lookup for field accesses allows programs to be run efficiently with
straightforward implementations. The power of late binding and overriding is available, but
only when instance methods are used.
Binding is also used in regards to determining the type of a generic,
8. Classes
Classes may be generic (§8.1.2), that is, they may declare type variables whose bindings may differ among different instances of the class.
Meaning that if you create 2 instances of List<String>
, the bindings of String
in both instances are different from each other.
This also applies to raw types:
4.8. Raw Types
class Outer<T>{
T t;
class Inner {
T setOuterT(T t1) { t = t1; return t; }
}
}
The type of the member(s) of Inner depends on the type parameter of Outer. If Outer is raw, Inner must be treated as raw as well, as there is no valid binding for T.
Meaning that declaring Outer outer
(this will generate a raw type warning) does not allow to determine the type of T
(obviously - it wasn't defined in the declaration).