C++ does not require binary floating point representation. Built-in integers are required to have a binary representation, commonly two's complement, but one's complement and sign and magnitude are also supported. But floating point can be e.g. decimal.
This leaves open the question of whether C++ floating point can have a radix that does not have 2 as a prime factor, like 2 and 10. Are other radixes permitted? I don't know, and last time I tried to check that, I failed.
However, assuming that the radix must be 2 or 10, then all your examples involve values that are powers of 2 and therefore can be exactly represented.
This means that the single answer to most of your questions is “yes”. The exception is the question “is integer multiply by IEEE 754 binary float [exact]”. If the result exceeds the precision available, then it can't be exact, but otherwise it is.
See the classic “What Every Computer Scientist Should Know About Floating-Point Arithmetic” for background info about floating point representation & properties in general.
If a value can be exactly represented in 32-bit or 64-bit IEEE 754, then that doesn't mean that it can be exactly represented with some other floating point representation. That's because different 32-bit representations and different 64-bit representations use different number of bits to hold the mantissa and have different exponent ranges. So a number that can be exactly represented in one way, can be beyond the precision or range of some other representation.
You can use std::numeric_limits<T>::is_iec559
(where e.g. T
is double
) to check whether your implementation claims to be IEEE 754 compatible. However, when floating point optimizations are turned on, at least the g++ compiler (1)erroneously claims to be IEEE 754, while not treating e.g. NaN values correctly according to that standard. In effect, the is_iec559
only tells you whether the number representation is IEEE 754, and not whether the semantics conform.
(1) Essentially, instead of providing different types for different semantics, gcc and g++ try to accommodate different semantics via compiler options. And with separate compilation of parts of a program, that can't conform to the C++ standard.
a=123
andb=0.25
so "is a * b always 61.5?" No, because it's 30.75. And there's your answer. Human error guarantees that some value that you think should be exactly representable in IEEE-754 actually won't be. So you should never write code that requires values to be exactly representable in IEEE-754. – Emblements