I'm looking for a clear, concise and accurate answer.
Ideally as the actual answer, although links to good explanations welcome.
I'm looking for a clear, concise and accurate answer.
Ideally as the actual answer, although links to good explanations welcome.
Boxed values are data structures that are minimal wrappers around primitive types*. Boxed values are typically stored as pointers to objects on the heap.
Thus, boxed values use more memory and take at minimum two memory lookups to access: once to get the pointer, and another to follow that pointer to the primitive. Obviously this isn't the kind of thing you want in your inner loops. On the other hand, boxed values typically play better with other types in the system. Since they are first-class data structures in the language, they have the expected metadata and structure that other data structures have.
In Java and Haskell generic collections can't contain unboxed values. Generic collections in .NET can hold unboxed values with no penalties. Where Java's generics are only used for compile-time type checking, .NET will generate specific classes for each generic type instantiated at run time.
Java and Haskell have unboxed arrays, but they're distinctly less convenient than the other collections. However, when peak performance is needed it's worth a little inconvenience to avoid the overhead of boxing and unboxing.
* For this discussion, a primitive value is any that can be stored on the call stack, rather than stored as a pointer to a value on the heap. Frequently that's just the machine types (ints, floats, etc), structs, and sometimes static sized arrays. .NET-land calls them value types (as opposed to reference types). Java folks call them primitive types. Haskellions just call them unboxed.
** I'm also focusing on Java, Haskell, and C# in this answer, because that's what I know. For what it's worth, Python, Ruby, and Javascript all have exclusively boxed values. This is also known as the "Everything is an object" approach***.
*** Caveat: A sufficiently advanced compiler / JIT can in some cases actually detect that a value which is semantically boxed when looking at the source, can safely be an unboxed value at runtime. In essence, thanks to brilliant language implementors your boxes are sometimes free.
from C# 3.0 In a Nutshell:
Boxing is the act of casting a value type into a reference type:
int x = 9;
object o = x; // boxing the int
unboxing is... the reverse:
// unboxing o
object o = 9;
int x = (int)o;
Boxing & unboxing is the process of converting a primitive value into an object oriented wrapper class (boxing), or converting a value from an object oriented wrapper class back to the primitive value (unboxing).
For example, in java, you may need to convert an int
value into an Integer
(boxing) if you want to store it in a Collection
because primitives can't be stored in a Collection
, only objects. But when you want to get it back out of the Collection
you may want to get the value as an int
and not an Integer
so you would unbox it.
Boxing and unboxing is not inherently bad, but it is a tradeoff. Depending on the language implementation, it can be slower and more memory intensive than just using primitives. However, it may also allow you to use higher level data structures and achieve greater flexibility in your code.
These days, it is most commonly discussed in the context of Java's (and other language's) "autoboxing/autounboxing" feature. Here is a java centric explanation of autoboxing.
In .Net:
Often you can't rely on what the type of variable a function will consume, so you need to use an object variable which extends from the lowest common denominator - in .Net this is object
.
However object
is a class and stores its contents as a reference.
List<int> notBoxed = new List<int> { 1, 2, 3 };
int i = notBoxed[1]; // this is the actual value
List<object> boxed = new List<object> { 1, 2, 3 };
int j = (int) boxed[1]; // this is an object that can be 'unboxed' to an int
While both these hold the same information the second list is larger and slower. Each value in the second list is actually a reference to an object
that holds the int
.
This is called boxed because the int
is wrapped by the object
. When its cast back the int
is unboxed - converted back to it's value.
For value types (i.e. all structs
) this is slow, and potentially uses a lot more space.
For reference types (i.e. all classes
) this is far less of a problem, as they are stored as a reference anyway.
A further problem with a boxed value type is that it's not obvious that you're dealing with the box, rather than the value. When you compare two structs
then you're comparing values, but when you compare two classes
then (by default) you're comparing the reference - i.e. are these the same instance?
This can be confusing when dealing with boxed value types:
int a = 7;
int b = 7;
if(a == b) // Evaluates to true, because a and b have the same value
object c = (object) 7;
object d = (object) 7;
if(c == d) // Evaluates to false, because c and d are different instances
It's easy to work around:
if(c.Equals(d)) // Evaluates to true because it calls the underlying int's equals
if(((int) c) == ((int) d)) // Evaluates to true once the values are cast
However it is another thing to be careful of when dealing with boxed values.
Object
does not implement the equality operator, but class types can be compared with the Is
operator; conversely, Int32
can be used with the equality operator, but not Is
. That distinction makes it much clearer what type of comparison is being done. –
Sarnoff Boxing
is the process of conversion of a value type into a reference type. Whereas Unboxing
is the conversion of a reference type into a value type.
EX: int i = 123;
object o = i;// Boxing
int j = (int)o;// UnBoxing
Value Types are: int
, char
and structures
, enumerations
.
Reference Types are:
Classes
,interfaces
,arrays
,strings
and objects
The language-agnostic meaning of a box is just "an object contains some other value".
Literally, boxing is an operation to put some value into the box. More specifically, it is an operation to create a new box containing the value. After boxing, the boxed value can be accessed from the box object, by unboxing.
Note that objects (not OOP-specific) in many programming languages are about identities, but values are not. Two objects are same iff. they have identities not distinguishable in the program semantics. Values can also be the same (usually under some equality operators), but we do not distinguish them as "one" or "two" unique values.
Providing boxes is mainly about the effort to distinguish side effects (typically, mutation) from the states on the objects otherwise probably invisible to the users.
A language may limit the allowed ways to access an object and hide the identity of the object by default. For example, typical Lisp dialects has no explicit distinctions between objects and values. As a result, the implementation has the freedom to share the underlying storage of the objects until some mutation operations occurs on the object (so the object must be "detached" after the operation from the shared instance to make the effect visible, i.e. the mutated value stored in the object could be different than the other objects having the old value). This technique is sometimes called object interning.
Interning makes the program more memory efficient at runtime if the objects are shared without frequent needs of mutation, at the cost that:
std::basic_string
for this reason exactly, even at the cost of breaking the ABI on at least one mainstream implementation (libstdc++).Mutable cells, i.e. boxes, are well-established facilities exactly to resolve the problems of the 1st and 2nd bullets listed above. Additionally, there can be immutable boxes for implementation of assignment in a functional language. See SRFI-111 for a practical instance.
Using mutable cells as function arguments with call-by-value strategy implements the visible effects of mutation being shared between the caller and the callee. The object contained by an box is effectively "called by shared" in this sense.
Sometimes, the boxes are referred as references (which is technically false), so the shared semantics are named "reference semantics". This is not correct, because not all references can propagate the visible side effects (e.g. immutable references). References are more about exposing the access by indirection, while boxes are the efforts to expose minimal details of the accesses like whether indirection or not (which is uninterested and better avoided by the implementation).
Moreover, "value semantic" is irrelevant here. Values are not against to references, nor to boxes. All the discussions above are based on call-by-value strategy. For others (like call-by-name or call-by-need), no boxes are needed to shared object contents in this way.
Java is probably the first programming language to make these features popular in the industry. Unfortunately, there seem many bad consequences concerned in this topic:
Some more tips on implementations (and comments to this answer):
double
object needs no unboxing to access its value, while a value of some other types can be boxed in a host double
object, and there is no reference for double
or the boxed value. With the naive pointer approach, a value of host object pointer like PyObject*
is an object reference holding a box whose boxed value is stored in the dynamically allocated space.The .NET FCL generic collections:
List<T>
Dictionary<TKey, UValue>
SortedDictionary<TKey, UValue>
Stack<T>
Queue<T>
LinkedList<T>
were all designed to overcome the performance issues of boxing and unboxing in previous collection implementations.
For more, see chapter 16, CLR via C# (2nd Edition).
Boxing and unboxing facilitates value types to be treated as objects. Boxing means converting a value to an instance of the object reference type. For example, Int
is a class and int
is a data type. Converting int
to Int
is an exemplification of boxing, whereas converting Int
to int
is unboxing. The concept helps in garbage collection, Unboxing, on the other hand, converts object type to value type.
int i=123;
object o=(object)i; //Boxing
o=123;
i=(int)o; //Unboxing.
var ii = 123; typeof ii
returns number
. var iiObj = new Number(123); typeof iiObj
returns object
. typeof ii + iiObj
returns number
. So this is the javascript equivalent of boxing. The value iiObj was automatically converted to a primitive number (unboxed) in order to perform the arithmetic and return an unboxed value. –
Firearm Like anything else, autoboxing can be problematic if not used carefully. The classic is to end up with a NullPointerException and not be able to track it down. Even with a debugger. Try this:
public class TestAutoboxNPE
{
public static void main(String[] args)
{
Integer i = null;
// .. do some other stuff and forget to initialise i
i = addOne(i); // Whoa! NPE!
}
public static int addOne(int i)
{
return i + 1;
}
}
i
is prematurely initialized. Either make it an empty declaration (Integer i;
) so that the compiler can point out that you forgot to initialize it, or wait to declare it until you know its value. –
Ulyanovsk © 2022 - 2024 — McMap. All rights reserved.
language-but-not-type-agnostic
?static-language-agnostic
? I'm not sure that SO needs the distinction; might be a good question for meta though. – Vickyvico