I have been working through the concepts of principal component analysis in R.
I am comfortable with applying PCA to a (say, labeled) dataset and ultimately extracting out the most interesting first few principal components as numeric variables from my matrix.
The ultimate question is, in a sense, now what? Most of the reading I've come across on PCA immediately halts after the computations are done, especially with regards to machine learning. Pardon my hyperbole, but I feel as if everyone agrees that the technique is useful, but nobody wants to actually use it after they do it.
More specifically, here's my real question:
I respect that principle components are linear combinations of the variables you started with. So, how does this transformed data play a role in supervised machine learning? How could someone ever use PCA as a way to reduce dimensionality of a dataset, and THEN, use these components with a supervised learner, say, SVM?
I'm absolutely confused about what happens to our labels. Once we are in eigenspace, great. But I don't see any way to continue to move forward with machine learning if this transformation blows apart our concept of classification (unless there's some linear combination of "Yes" or "No" I haven't come across!)