A simple yet inefficient way would be to store it as a list of coefficients. For example, the polynomial in the question would look like this:
[6, 5, 3]
If a term is missing, place a zero in its place. For instance, the polynomial 2x^3 - 4x + 7
would be represented like this:
[2, 0, -4, 7]
The degree of the polynomial is given by the length of the list minus one. This representation has one serious disadvantage: for sparse polynomials, the list will contain a lot of zeros.
A more reasonable representation of the term list of a sparse polynomial is as a list of the nonzero terms, where each term is a list containing the order of the term and the coefficient for that order; the degree of the polynomial is given by the order of the first term. For example, the polynomial x^100+2x^2+1
would be represented by this list:
[[100, 1], [2, 2], [0, 1]]
As an example of how useful this representation is, the book SICP builds a simple but very effective symbolic algebra system using the second representation for polynomials described above.