Here is a way to solve for t the equation in Andrew Durward's excellent answer.
To just plug in values one can skip to the bottom.
(Oax + t*Dax - Obx - t*Dbx)^2 + (Oay + t*Day - Oby - t*Dby)^2 = (ra + rb)^2
(Oax * (Oax + t*Dax - Obx - t*Dbx) + t*Dax * (Oax + t*Dax - Obx - t*Dbx)
- Obx * (Oax + t*Dax - Obx - t*Dbx) - t*Dbx * (Oax + t*Dax - Obx - t*Dbx))
+
(Oay * (Oay + t*Day - Oby - t*Dby) + t*Day * (Oay + t*Day - Oby - t*Dby)
- Oby * (Oay + t*Day - Oby - t*Dby) - t*Dby * (Oay + t*Day - Oby - t*Dby))
=
(ra + rb)^2
Oax^2 + (Oax * t*Dax) - (Oax * Obx) - (Oax * t*Dbx)
+ (t*Dax * Oax) + (t*Dax)^2 - (t*Dax * Obx) - (t*Dax * t*Dbx)
- (Obx * Oax) - (Obx * t*Dax) + Obx^2 + (Obx * t*Dbx)
- (t*Dbx * Oax) - (t*Dbx * t*Dax) + (t*Dbx * Obx) + (t*Dbx)^2
+
Oay^2 + (Oay * t*Day) - (Oay * Oby) - (Oay * t*Dby)
+ (t*Day * Oay) + (t*Day)^2 - (t*Day * Oby) - (t*Day * t*Dby)
- (Oby * Oay) - (Oby * t*Day) + Oby^2 + (Oby * t*Dby)
- (t*Dby * Oay) - (t*Dby * t*Day) + (t*Dby * Oby) + (t*Dby)^2
=
(ra + rb)^2
t^2 * (Dax^2 + Dbx^2 - (Dax * Dbx) - (Dbx * Dax)
+ Day^2 + Dby^2 - (Day * Dby) - (Dby * Day))
+
t * ((Oax * Dax) - (Oax * Dbx) + (Dax * Oax) - (Dax * Obx)
- (Obx * Dax) + (Obx * Dbx) - (Dbx * Oax) + (Dbx * Obx)
+ (Oay * Day) - (Oay * Dby) + (Day * Oay) - (Day * Oby)
- (Oby * Day) + (Oby * Dby) - (Dby * Oay) + (Dby * Oby))
+
Oax^2 - (Oax * Obx) - (Obx * Oax) + Obx^2
+ Oay^2 - (Oay * Oby) - (Oby * Oay) + Oby^2 - (ra + rb)^2
=
0
Now it's a standard form quadratic equation:
ax2 + bx + c = 0
solved like this:
x = (−b ± sqrt(b^2 - 4ac)) / 2a // this x here is t
where--
a = Dax^2 + Dbx^2 + Day^2 + Dby^2 - (2 * Dax * Dbx) - (2 * Day * Dby)
b = (2 * Oax * Dax) - (2 * Oax * Dbx) - (2 * Obx * Dax) + (2 * Obx * Dbx)
+ (2 * Oay * Day) - (2 * Oay * Dby) - (2 * Oby * Day) + (2 * Oby * Dby)
c = Oax^2 + Obx^2 + Oay^2 + Oby^2
- (2 * Oax * Obx) - (2 * Oay * Oby) - (ra + rb)^2
t exists (collision will occur) if--
(a != 0) && (b^2 >= 4ac)