Think in terms of two or three bits and then understand that these things scale up to 32 or 64 or howevermany bits.
First, lets start with decimal
99
+22
===
In order to do this we are going to have some "Carry the one's" going on.
11
99
+22
===
121
9 plus 2 is 1 carry the one, 1 plus 9 plus 2 is 2 carry the one...
The point being though to notice that to add two numbers I actually needed three rows, for at least some of it I might need to be able to add three numbers. Same thing with an adder in an alu, each column or bit lane, single bit adder, needs to be able to add two inputs plus a carry in bit, and the output is a one bit result and a one bit carry.
Since you used 5 and 2 lets do some 4 bit binary math
0101
+0010
=====
0111
We didnt need a carry on this one, but you can see the math worked, 5 + 2 = 7.
And if we want to add 5 and -2
11
0101
+1110
=====
0011
And the answer is 3 as expected, not really surprising but we had a carry out. And since this was an add with a minus number in twos complement it all worked, there was no if sign bit then, twos complement makes it so we dont care just feed the adder the two operands.
Now if you want to make a subtle difference, what if you want to subtract 2 from 5, you select the subtract instruction not add. Well we all learned that negating in twos complement means invert and add one. And we saw above that a two input adder really needs a third input for carry in so that it can be cascaded to however wide the adder needs to be. So instead of doing two add operations, invert and add 1 being the first add the real add all we have to do is invert and set the carry in:
Understand that there is no subtract logic, it adds the negative of whatever you feed it.
v this bit is normally zero, for a subtract we set this carry in bit
11 11
0101 five
+1101 ones complement of 2
=====
0011
And what do you know we get the same answer...It doesnt matter what the actual values are for either of the operands. if it is an add operation you put a zero on the carry in bit and feed it to the adder. If it is a subtract operation you invert the second operand and put a one on the carry in and feed it to the same adder. Whatever falls out falls out. If your logic has enough bits to hold the result then it all works, if you do not have enough room then you overflow.
There are two kinds of overflow, unsigned, and signed. Unsigned is simple it is the carry bit. Signed overflow has to do with comparing the carry in bit on the msbit column with the carry out bit for that column. For our math above you see that the carry and carry out of that msbit column is the same, both are a one. And we happen to know by inspection that a 4 bit system has enough room to properly represent the numbers +5, -2, and +3. A 4 bit system can represent the numbers +7 down to -8. So if you were to add 5 and 5 or -6 and -3 you would get a signed overflow.
01 1
0101
+0101
=====
1010
Understand that the SAME addition logic is used for signed and unsigned math, it is up to your code not the logic to virtually define if those bits were considered twos complement signed or unsigned.
With the 5 + 5 case above you see that the carry in on the msbit column is a 1, but the carry out is a 0 that means the V flag, the signed overflow flag, will be set by the logic. At the same time the carry out of that bit which is the C flag the carry flag, will not be set. When thinking unsigned 4 bits can hold the numbers 0 to 15 so 5 + 5 = 10 does not overflow. But when thinking signed 4 bits can hold +7 to -8 and 5 + 5 = 10 is a signed overflow so the V flag is set.
if/when you have an add with carry instruction they take the SAME adder circuit and instead of feeding the carry in a zero it is fed the carry flag. Likewise a subtract with borrow, instead of feeding the carry in a 1 the carry in is either a 1 or 0 based on the state of the carry flag in the status register.
Multiplication is whole other story, binary makes multiplication much easier than when done with decimal math, but you DO have to have different unsigned and signed multiplication instructions. And division is its own separate beast, which is why most instruction sets do not have a divide. Many do not have a multiply because of the number of gates or clocks it burns.