Why Is There No Floating Point Range Implementation In The Standard Library?
As made clear by all the posts here, there is no floating point version of range()
. That said, the omission makes sense if we consider that the range()
function is often used as an index (and of course, that means an accessor) generator. So, when we call range(0,40)
, we're in effect saying we want 40 values starting at 0, up to 40, but non-inclusive of 40 itself.
When we consider that index generation is as much about the number of indices as it is their values, the use of a float implementation of range()
in the standard library makes less sense. For example, if we called the function frange(0, 10, 0.25)
, we would expect both 0 and 10 to be included, but that would yield a generator with 41 values, not the 40 one might expect from 10/0.25
.
Thus, depending on its use, an frange()
function will always exhibit counter intuitive behavior; it either has too many values as perceived from the indexing perspective or is not inclusive of a number that reasonably should be returned from the mathematical perspective. In other words, it's easy to see how such a function would appear to conflate two very different use cases – the naming implies the indexing use case; the behavior implies a mathematical one.
The Mathematical Use Case
With that said, as discussed in other posts, numpy.linspace()
performs the generation from the mathematical perspective nicely:
numpy.linspace(0, 10, 41)
array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75,
2. , 2.25, 2.5 , 2.75, 3. , 3.25, 3.5 , 3.75,
4. , 4.25, 4.5 , 4.75, 5. , 5.25, 5.5 , 5.75,
6. , 6.25, 6.5 , 6.75, 7. , 7.25, 7.5 , 7.75,
8. , 8.25, 8.5 , 8.75, 9. , 9.25, 9.5 , 9.75, 10.
])
The Indexing Use Case
And for the indexing perspective, I've written a slightly different approach with some tricksy string magic that allows us to specify the number of decimal places.
# Float range function - string formatting method
def frange_S (start, stop, skip = 1.0, decimals = 2):
for i in range(int(start / skip), int(stop / skip)):
yield float(("%0." + str(decimals) + "f") % (i * skip))
Similarly, we can also use the built-in round
function and specify the number of decimals:
# Float range function - rounding method
def frange_R (start, stop, skip = 1.0, decimals = 2):
for i in range(int(start / skip), int(stop / skip)):
yield round(i * skip, ndigits = decimals)
A Quick Comparison & Performance
Of course, given the above discussion, these functions have a fairly limited use case. Nonetheless, here's a quick comparison:
def compare_methods (start, stop, skip):
string_test = frange_S(start, stop, skip)
round_test = frange_R(start, stop, skip)
for s, r in zip(string_test, round_test):
print(s, r)
compare_methods(-2, 10, 1/3)
The results are identical for each:
-2.0 -2.0
-1.67 -1.67
-1.33 -1.33
-1.0 -1.0
-0.67 -0.67
-0.33 -0.33
0.0 0.0
...
8.0 8.0
8.33 8.33
8.67 8.67
9.0 9.0
9.33 9.33
9.67 9.67
And some timings:
>>> import timeit
>>> setup = """
... def frange_s (start, stop, skip = 1.0, decimals = 2):
... for i in range(int(start / skip), int(stop / skip)):
... yield float(("%0." + str(decimals) + "f") % (i * skip))
... def frange_r (start, stop, skip = 1.0, decimals = 2):
... for i in range(int(start / skip), int(stop / skip)):
... yield round(i * skip, ndigits = decimals)
... start, stop, skip = -1, 8, 1/3
... """
>>> min(timeit.Timer('string_test = frange_s(start, stop, skip); [x for x in string_test]', setup=setup).repeat(30, 1000))
0.024284090992296115
>>> min(timeit.Timer('round_test = frange_r(start, stop, skip); [x for x in round_test]', setup=setup).repeat(30, 1000))
0.025324633985292166
Looks like the string formatting method wins by a hair on my system.
The Limitations
And finally, a demonstration of the point from the discussion above and one last limitation:
# "Missing" the last value (10.0)
for x in frange_R(0, 10, 0.25):
print(x)
0.25
0.5
0.75
1.0
...
9.0
9.25
9.5
9.75
Further, when the skip
parameter is not divisible by the stop
value, there can be a yawning gap given the latter issue:
# Clearly we know that 10 - 9.43 is equal to 0.57
for x in frange_R(0, 10, 3/7):
print(x)
0.0
0.43
0.86
1.29
...
8.14
8.57
9.0
9.43
There are ways to address this issue, but at the end of the day, the best approach would probably be to just use Numpy.
range(5, 50, 5)
, and then just divide every number by 10. – Wholeheartedrange()
:) – Wholehearted