You have to clear the threshold first, and this works only for binary classification:
from pyspark.mllib.classification import LogisticRegressionWithLBFGS, LogisticRegressionModel
from pyspark.mllib.regression import LabeledPoint
parsed_data = [LabeledPoint(0.0, [4.6,3.6,1.0,0.2]),
LabeledPoint(0.0, [5.7,4.4,1.5,0.4]),
LabeledPoint(1.0, [6.7,3.1,4.4,1.4]),
LabeledPoint(0.0, [4.8,3.4,1.6,0.2]),
LabeledPoint(1.0, [4.4,3.2,1.3,0.2])]
model = LogisticRegressionWithLBFGS.train(sc.parallelize(parsed_data))
model.threshold
# 0.5
model.predict(parsed_data[2].features)
# 1
model.clearThreshold()
model.predict(parsed_data[2].features)
# 0.9873840020002339