Here is my attempt to roll your own.
The F-statistic for nested models is defined as:
(D_s - D_b ) / (addtl_parameters * phi_b)
Where:
D_s
is deviance of small model
D_b
is deviance of larger ("big)" model
addtl_parameters
is the difference in degrees of freedom between models.
phi_b
is the estimate of dispersion parameter for the larger model'
"Statistical theory says that the F-statistic
follows an F distribution, with a numerator degrees of freedom equal to the number of
added parameters and a denominator degrees of freedom equal to n - p_b
, or the number
of records minus the number of parameters in the big model."
We translate this into code with:
from scipy import stats
def calculate_nested_f_statistic(small_model, big_model):
"""Given two fitted GLMs, the larger of which contains the parameter space of the smaller, return the F Stat and P value corresponding to the larger model adding explanatory power"""
addtl_params = big_model.df_model - small_model.df_model
f_stat = (small_model.deviance - big_model.deviance) / (addtl_params * big_model.scale)
df_numerator = addtl_params
# use fitted values to obtain n_obs from model object:
df_denom = (big_model.fittedvalues.shape[0] - big_model.df_model)
p_value = stats.f.sf(f_stat, df_numerator, df_denom)
return (f_stat, p_value)
Here is a reproducible example, following the gamma GLM example in statsmodels (https://www.statsmodels.org/stable/glm.html):
import numpy as np
import statsmodels.api as sm
data2 = sm.datasets.scotland.load()
data2.exog = sm.add_constant(data2.exog, prepend=False)
big_model = sm.GLM(data2.endog, data2.exog, family=sm.families.Gamma()).fit()
# Drop one covariate (column):
smaller_model = sm.GLM(data2.endog, data2.exog[:, 1:], family=sm.families.Gamma()).fit()
# Using function defined in answer:
calculate_nested_f_statistic(smaller_model, big_model)
# (9.519052917304652, 0.004914748992474178)
Source:
https://www.casact.org/pubs/monographs/papers/05-Goldburd-Khare-Tevet.pdf