I don't suppose performance matters much here, but I can't resist. The zip() function completely recopies both vectors (more of a matrix transpose, actually) just to get the data in "Pythonic" order. It would be interesting to time the nuts-and-bolts implementation:
import math
def cosine_similarity(v1,v2):
"compute cosine similarity of v1 to v2: (v1 dot v2)/{||v1||*||v2||)"
sumxx, sumxy, sumyy = 0, 0, 0
for i in range(len(v1)):
x = v1[i]; y = v2[i]
sumxx += x*x
sumyy += y*y
sumxy += x*y
return sumxy/math.sqrt(sumxx*sumyy)
v1,v2 = [3, 45, 7, 2], [2, 54, 13, 15]
print(v1, v2, cosine_similarity(v1,v2))
Output: [3, 45, 7, 2] [2, 54, 13, 15] 0.972284251712
That goes through the C-like noise of extracting elements one-at-a-time, but does no bulk array copying and gets everything important done in a single for loop, and uses a single square root.
ETA: Updated print call to be a function. (The original was Python 2.7, not 3.3. The current runs under Python 2.7 with a from __future__ import print_function
statement.) The output is the same, either way.
CPYthon 2.7.3 on 3.0GHz Core 2 Duo:
>>> timeit.timeit("cosine_similarity(v1,v2)",setup="from __main__ import cosine_similarity, v1, v2")
2.4261788514654654
>>> timeit.timeit("cosine_measure(v1,v2)",setup="from __main__ import cosine_measure, v1, v2")
8.794677709375264
So, the unpythonic way is about 3.6 times faster in this case.
scipy.spatial.distance.cosine
. – Cogan