I want to change List to Vector in pySpark, and then use this column to Machine Learning model for training. But my spark version is 1.6.0, which does not have VectorUDT()
. So what type should I return in my udf function?
from pyspark.sql import SQLContext
from pyspark import SparkContext, SparkConf
from pyspark.sql.functions import *
from pyspark.mllib.linalg import DenseVector
from pyspark.mllib.linalg import Vectors
from pyspark.sql.types import *
conf = SparkConf().setAppName('rank_test')
sc = SparkContext(conf=conf)
spark = SQLContext(sc)
df = spark.createDataFrame([[[0.1,0.2,0.3,0.4,0.5]]],['a'])
print '???'
df.show()
def list2vec(column):
print '?????',column
return Vectors.dense(column)
getVector = udf(lambda y: list2vec(y),DenseVector() )
df.withColumn('b',getVector(col('a'))).show()
I have tried many Types , and this DenseVector()
give me error:
Traceback (most recent call last):
File "t.py", line 21, in <module>
getVector = udf(lambda y: list2vec(y),DenseVector() )
TypeError: __init__() takes exactly 2 arguments (1 given)
Help me, please.