I don't think there is a way to restore tflite back to pb as some information are lost after conversion. I found an indirect way to have a glimpse on what is inside tflite model is to read back each of the tensor.
interpreter = tf.contrib.lite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()
# trial some arbitrary numbers to find out the num of tensors
num_layer = 89
for i in range(num_layer):
detail = interpreter._get_tensor_details(i)
print(i, detail['name'], detail['shape'])
and you would see something like below. As there are only limited of operations that are currently supported, it is not too difficult to reverse engineer the network architecture. I have put some tutorials too on my Github
0 MobilenetV1/Logits/AvgPool_1a/AvgPool [ 1 1 1 1024]
1 MobilenetV1/Logits/Conv2d_1c_1x1/BiasAdd [ 1 1 1 1001]
2 MobilenetV1/Logits/Conv2d_1c_1x1/Conv2D_bias [1001]
3 MobilenetV1/Logits/Conv2d_1c_1x1/weights_quant/FakeQuantWithMinMaxVars [1001 1 1 1024]
4 MobilenetV1/Logits/SpatialSqueeze [ 1 1001]
5 MobilenetV1/Logits/SpatialSqueeze_shape [2]
6 MobilenetV1/MobilenetV1/Conv2d_0/Conv2D_Fold_bias [32]
7 MobilenetV1/MobilenetV1/Conv2d_0/Relu6 [ 1 112 112 32]
8 MobilenetV1/MobilenetV1/Conv2d_0/weights_quant/FakeQuantWithMinMaxVars [32 3 3 3]
9 MobilenetV1/MobilenetV1/Conv2d_10_depthwise/Relu6 [ 1 14 14 512]
10 MobilenetV1/MobilenetV1/Conv2d_10_depthwise/depthwise_Fold_bias [512]
11 MobilenetV1/MobilenetV1/Conv2d_10_depthwise/weights_quant/FakeQuantWithMinMaxVars [ 1 3 3 512]
12 MobilenetV1/MobilenetV1/Conv2d_10_pointwise/Conv2D_Fold_bias [512]
13 MobilenetV1/MobilenetV1/Conv2d_10_pointwise/Relu6 [ 1 14 14 512]
14 MobilenetV1/MobilenetV1/Conv2d_10_pointwise/weights_quant/FakeQuantWithMinMaxVars [512 1 1 512]
15 MobilenetV1/MobilenetV1/Conv2d_11_depthwise/Relu6 [ 1 14 14 512]
16 MobilenetV1/MobilenetV1/Conv2d_11_depthwise/depthwise_Fold_bias [512]
17 MobilenetV1/MobilenetV1/Conv2d_11_depthwise/weights_quant/FakeQuantWithMinMaxVars [ 1 3 3 512]
18 MobilenetV1/MobilenetV1/Conv2d_11_pointwise/Conv2D_Fold_bias [512]
19 MobilenetV1/MobilenetV1/Conv2d_11_pointwise/Relu6 [ 1 14 14 512]
20 MobilenetV1/MobilenetV1/Conv2d_11_pointwise/weights_quant/FakeQuantWithMinMaxVars [512 1 1 512]