I am trying to write a very large amount of data to a file in constant memory.
import qualified Data.ByteString.Lazy as B
{- Creates and writes num grids of dimensions aa x aa -}
writeGrids :: Int -> Int -> IO ()
writeGrids num aa = do
rng <- newPureMT
let (grids,shuffleds) = createGrids rng aa
createDirectoryIfMissing True "data/grids/"
B.writeFile (gridFileName num aa)
(encode (take num grids))
B.writeFile (shuffledFileName num aa)
(encode (take num shuffleds))
However this consumes memory proportional to the size of num
. I know createGrids
is a sufficiently lazy function because I have tested it by appending error "not lazy enough"
(as suggested by the Haskell wiki here) to the end of the lists it returns and no errors are raised. take
is a lazy function that is defined in Data.List
. encode
is also a lazy function defined in Data.Binary
. B.writeFile
is defined in Data.ByteString.Lazy
.
Here is the complete code so you can execute it:
import Control.Arrow (first)
import Data.Binary
import GHC.Float (double2Float)
import System.Random (next)
import System.Random.Mersenne.Pure64 (PureMT, newPureMT, randomDouble)
import System.Random.Shuffle (shuffle')
import qualified Data.ByteString.Lazy as B
main :: IO ()
main = writeGrids 1000 64
{- Creates and writes num grids of dimensions aa x aa -}
writeGrids :: Int -> Int -> IO ()
writeGrids num aa = do
rng <- newPureMT
let (grids,shuffleds) = createGrids rng aa
B.writeFile "grids.bin" (encode (take num grids))
B.writeFile "shuffleds.bin" (encode (take num shuffleds))
{- a random number generator, dimension of grids to make
returns a pair of lists, the first is a list of grids of dimensions
aa x aa, the second is a list of the shuffled grids corresponding to the first list -}
createGrids :: PureMT -> Int -> ([[(Float,Float)]],[[(Float,Float)]])
createGrids rng aa = (grids,shuffleds) where
rs = randomFloats rng
grids = map (getGridR aa) (chunksOf (2 * aa * aa) rs)
shuffleds = shuffler (aa * aa) rng grids
{- length of each grid, a random number generator, a list of grids
returns a the list with each grid shuffled -}
shuffler :: Int -> PureMT -> [[(Float,Float)]] -> [[(Float,Float)]]
shuffler n rng (xs:xss) = shuffle' xs n rng : shuffler n (snd (next rng)) xss
shuffler _ _ [] = []
{- divides list into chunks of size n -}
chunksOf :: Int -> [a] -> [[a]]
chunksOf n = go
where go xs = case splitAt n xs of
(ys,zs) | null ys -> []
| otherwise -> ys : go zs
{- dimension of grid, list of random floats [0,1]
returns a list of (x,y) points of length n^2 such that all
points are in the range [0,1] and the points are a randomly
perturbed regular grid -}
getGridR :: Int -> [Float] -> [(Float,Float)]
getGridR n rs = pts where
nn = n * n
(irs,jrs) = splitAt nn rs
n' = fromIntegral n
grid = [ (p,q) | p <- [0..n'-1], q <- [0..n'-1] ]
pts = zipWith (\(p,q) (ir,jr) -> ((p+ir)/n',(q+jr)/n')) grid (zip irs jrs)
{- an infinite list of random floats in range [0,1] -}
randomFloats :: PureMT -> [Float]
randomFloats rng = let (d,rng') = first double2Float (randomDouble rng)
in d : randomFloats rng'
The required packages are: , bytestring , binary , random , mersenne-random-pure64 , random-shuffle
Binary
instance for[a]
forces the spine of the list withlength
– Clarinda