I was just going through the definition of modular multiplicative inverse and from what I understand:
ax = 1 (mod m)
=> m is a divisor of ax -1 and x is the inverse we are looking for
=> ax - 1 = q*m (where q is some integer)
And the most important thing is gcd(a, m) = 1
i.e. a and m are co-primes
In your case:
ed = 1 mod((p-1)(q-1)) //p, q and e are given
=> ed - 1 = z*((p-1)(q-1)) //where z is some integer and we need to find d
Again from the wikipedia entry, one can compute the modular inverse using the extended Euclidean GCD Algorithm which does the following:
ax + by = g //where g = gcd(a,b) i.e. a and b are co-primes
//The extended gcd algorithm gives us the value of x and y as well.
In your case the equation would be something like this:
ed - z*((p-1)(q-1)) = 1; //Compare it with the structure given above
a -> e
x -> d
b -> (p-1)(q-1)
y -> z
So if we just apply that algorithm to this case, we will get the values of d
and z
.
For ax + by = gcd(a,b)
, the extended gcd algorithm could look something like (source):
function xgcd(a, b) {
if (b == 0) {
return [1, 0, a];
}
temp = xgcd(b, a % b);
x = temp[0];
y = temp[1];
d = temp[2];
return [y, x-y*Math.floor(a/b), d];
}
This algorithm runs in time O(log(m)^2), assuming |a| < m, and is generally more efficient than exponentiation.
I don't know if there is an inbuilt function for this in javascript. I doubt if there is, and I am a fan of algorithms, so I thought you might want to give this approach a try. You can fiddle with it and change it to handle your range of values and I hope it gets you started in the right direction.
System.out.println
? That's Java, not Javascript. – LimassolmodInverse()
in JavaScript? Because I'm pretty sure there isn't a built-in function for that. – Germane