The usual problem is that float arithmetic, here with double-floats, (independent of the surrounding code like matrix multiplication) conses.
Generally the first thing to do with SBCL in such cases:
Put the code into a file and compile it
The compiler will then output a lot of optimization problems, given that one compiles for speed. You would then need to examine the notes and see what you can do.
Here for example the LOOP
sum lacks type information.
There is actually a LOOP
syntax to declare the type of the sum variable. I don't know if SBCL takes advantage of that:
(loop repeat 10
sum 1.0d0 of-type double-float)
SBCL 1.3.0 on 32bit ARM for your code:
* (compile-file "/tmp/test.lisp")
; compiling file "/tmp/test.lisp" (written 13 DEC 2015 11:34:26 AM):
; compiling (DEFUN MATRIX-MUL ...)
; file: /tmp/test.lisp
... here are the notes that get generated:
1)
; in: DEFUN MATRIX-MUL
; (SETF (AREF DEST I)
; (LOOP FOR J BELOW COLS
; SUM (THE DOUBLE-FLOAT (* # #))))
; --> LET* FUNCALL SB-C::%FUNCALL (SETF AREF)
; ==>
; (SB-KERNEL:HAIRY-DATA-VECTOR-SET ARRAY SB-INT:INDEX SB-C::NEW-VALUE)
;
; note: unable to
; avoid runtime dispatch on array element type
; due to type uncertainty:
; The first argument is a (VECTOR DOUBLE-FLOAT), not a SIMPLE-ARRAY.
; (AREF MATRIX I J)
; --> LET*
; ==>
; (SB-KERNEL:HAIRY-DATA-VECTOR-REF ARRAY SB-INT:INDEX)
;
; note: unable to
; avoid runtime dispatch on array element type
; due to type uncertainty:
; The first argument is a (ARRAY DOUBLE-FLOAT (* *)), not a SIMPLE-ARRAY.
; (AREF VECTOR J)
; ==>
; (SB-KERNEL:HAIRY-DATA-VECTOR-REF ARRAY SB-INT:INDEX)
;
; note: unable to
; avoid runtime dispatch on array element type
; due to type uncertainty:
; The first argument is a (VECTOR DOUBLE-FLOAT), not a SIMPLE-ARRAY.
; (LOOP FOR J BELOW COLS
; SUM (THE DOUBLE-FLOAT (* (AREF MATRIX I J) (AREF VECTOR J))))
; --> BLOCK LET SB-LOOP::WITH-SUM-COUNT LET SB-LOOP::LOOP-BODY TAGBODY SETQ THE
; ==>
; (+ #:LOOP-SUM-8 (THE DOUBLE-FLOAT (* (AREF MATRIX I J) (AREF VECTOR J))))
;
; note: unable to
; optimize
; due to type uncertainty:
; The first argument is a NUMBER, not a (COMPLEX SINGLE-FLOAT).
;
; note: unable to
; optimize
; due to type uncertainty:
; The first argument is a NUMBER, not a (COMPLEX DOUBLE-FLOAT).
; --> BLOCK LET SB-LOOP::WITH-SUM-COUNT LET SB-LOOP::LOOP-BODY TAGBODY WHEN IF
; --> >= OR LET IF OR THE = IF
; ==>
; (= SB-C::X SB-C::Y)
;
; note: unable to open code because: The operands might not be the same type.
; (DOTIMES (I ROWS)
; (SETF (AREF DEST I)
; (LOOP FOR J BELOW COLS
; SUM (THE DOUBLE-FLOAT #))))
; --> DO BLOCK LET TAGBODY UNLESS IF >= IF
; ==>
; (< SB-C::X SB-C::Y)
;
; note: forced to do static-fun Two-arg-< (cost 53)
; unable to do inline fixnum comparison (cost 4) because:
; The second argument is a INTEGER, not a FIXNUM.
; unable to do inline (signed-byte 32) comparison (cost 6) because:
; The second argument is a INTEGER, not a (SIGNED-BYTE 32).
; etc.
; (LOOP FOR J BELOW COLS
; SUM (THE DOUBLE-FLOAT (* (AREF MATRIX I J) (AREF VECTOR J))))
; --> BLOCK LET SB-LOOP::WITH-SUM-COUNT LET SB-LOOP::LOOP-BODY TAGBODY WHEN IF
; --> >= OR LET > IF
; ==>
; (> SB-C::X SB-C::Y)
;
; note: forced to do static-fun Two-arg-> (cost 53)
; unable to do inline fixnum comparison (cost 4) because:
; The second argument is a REAL, not a FIXNUM.
; unable to do inline (signed-byte 32) comparison (cost 6) because:
; The second argument is a REAL, not a (SIGNED-BYTE 32).
; etc.
; --> BLOCK LET SB-LOOP::WITH-SUM-COUNT LET SB-LOOP::LOOP-BODY TAGBODY SETQ THE
; ==>
; (+ #:LOOP-SUM-8 (THE DOUBLE-FLOAT (* (AREF MATRIX I J) (AREF VECTOR J))))
;
; note: forced to do static-fun Two-arg-+ (cost 53)
; unable to do inline float arithmetic (cost 2) because:
; The first argument is a NUMBER, not a DOUBLE-FLOAT.
; The result is a (VALUES NUMBER &OPTIONAL), not a (VALUES DOUBLE-FLOAT
; &REST T).
;
; note: doing float to pointer coercion (cost 13), for:
; the second argument of static-fun Two-arg-+
;
; compilation unit finished
; printed 10 notes