using ARIMA you need to include seasonality and exogenous variables in the model yourself. While using SARIMA (Seasonal ARIMA) or SARIMAX (also for exogenous factors) implementation give C.I. to summary_frame:
import statsmodels.api as sm
import matplotlib.pyplot as plt
import pandas as pd
dta = sm.datasets.sunspots.load_pandas().data[['SUNACTIVITY']]
dta.index = pd.Index(pd.date_range("1700", end="2009", freq="A"))
print(dta)
print("init data:\n")
dta.plot(figsize=(12,4));
plt.show()
##print("SARIMAX(dta, order=(2,0,0), trend='c'):\n")
result = sm.tsa.SARIMAX(dta, order=(2,0,0), trend='c').fit(disp=False)
print(">>> result.params:\n", result.params, "\n")
##print("SARIMA_model.plot_diagnostics:\n")
result.plot_diagnostics(figsize=(15,12))
plt.show()
# summary stats of residuals
print(">>> residuals.describe:\n", result.resid.describe(), "\n")
# Out-of-sample forecasts are produced using the forecast or get_forecast methods from the results object
# The get_forecast method is more general, and also allows constructing confidence intervals.
fcast_res1 = result.get_forecast()
# specify that we want a confidence level of 90%
print(">>> forecast summary at alpha=0.01:\n", fcast_res1.summary_frame(alpha=0.10), "\n")
# plot forecast
fig, ax = plt.subplots(figsize=(15, 5))
# Construct the forecasts
fcast = result.get_forecast('2010Q4').summary_frame()
print(fcast)
fcast['mean'].plot(ax=ax, style='k--')
ax.fill_between(fcast.index, fcast['mean_ci_lower'], fcast['mean_ci_upper'], color='k', alpha=0.1);
fig.tight_layout()
plt.show()
docs: "The forecast above may not look very impressive, as it is almost a straight line. This is because this is a very simple, univariate forecasting model. Nonetheless, keep in mind that these simple forecasting models can be extremely competitive"
p.s. here " you can use it in a non-seasonal way by setting the seasonal terms to zero."