I'm trying to implement the following formula in Julia for calculating the Gini coefficient of a wage distribution:
where
Here's a simplified version of the code I'm using for this:
# Takes a array where first column is value of wages
# (y_i in formula), and second column is probability
# of wage value (f(y_i) in formula).
function gini(wagedistarray)
# First calculate S values in formula
for i in 1:length(wagedistarray[:,1])
for j in 1:i
Swages[i]+=wagedistarray[j,2]*wagedistarray[j,1]
end
end
# Now calculate value to subtract from 1 in gini formula
Gwages = Swages[1]*wagedistarray[1,2]
for i in 2:length(Swages)
Gwages += wagedistarray[i,2]*(Swages[i]+Swages[i-1])
end
# Final step of gini calculation
return giniwages=1-(Gwages/Swages[length(Swages)])
end
wagedistarray=zeros(10000,2)
Swages=zeros(length(wagedistarray[:,1]))
for i in 1:length(wagedistarray[:,1])
wagedistarray[i,1]=1
wagedistarray[i,2]=1/10000
end
@time result=gini(wagedistarray)
It gives a value of near zero, which is what you expect for a completely equal wage distribution. However, it takes quite a long time: 6.796 secs.
Any ideas for improvement?