1) CVXR We can compute the coefficients using CVXR directly by specifying the objective and constraint. We assume that D is the response, the coefficients of A and B must sum to 1, b[1] is the intercept and b[2], b[3] and b[4] are the coefficients of A, B and C respectively.
library(CVXR)
b <- Variable(4)
X <- cbind(1, as.matrix(data[-4]))
obj <- Minimize(sum((data$D - X %*% b)^2))
constraints <- list(b[2] + b[3] == 1)
problem <- Problem(obj, constraints)
soln <- solve(problem)
bval <- soln$getValue(b)
bval
## [,1]
## [1,] 1.6428605
## [2,] -0.3571428
## [3,] 1.3571428
## [4,] -0.1428588
The objective is the residual sum of squares and it equals:
soln$value
## [1] 0.07142857
2) pracma We can also use the pracma package to compute the coefficients. We specify the X matrix, response vector, the constraint matrix (in this case the vector given as the third argument is regarded as a one row matrix) and the right hand side of the constraint.
library(pracma)
lsqlincon(X, data$D, Aeq = c(0, 1, 1, 0), beq = 1) # X is from above
## [1] 1.6428571 -0.3571429 1.3571429 -0.1428571
3) limSolve This package can also solve for the coefficients of regression problems with constraints. The arguments are the same as in (2).
library(limSolve)
lsei(X, data$D, c(0, 1, 1, 0), 1)
giving:
$X
A B C
1.6428571 -0.3571429 1.3571429 -0.1428571
$residualNorm
[1] 0
$solutionNorm
[1] 0.07142857
$IsError
[1] FALSE
$type
[1] "lsei"
4) nls This can be formulated as a problem for nls
with the B coefficient equal to one minus the A coefficient.
nls(D ~ b0 + b1 * A + (1-b1) * B + b2 * C, data,
start = list(b0 = 1, b1 = 1, b2 = 1))
## D ~ b0 + b1 * A + (1 - b1) * B + b2 * C
## data: data
## b0 b1 b2
## 1.6429 -0.3571 -0.1429
## residual sum-of-squares: 0.07143
##
## Number of iterations to convergence: 1
## Achieved convergence tolerance: 2.803e-08
Check
We can double check the above by using the lm
approach in the other answer:
lm(D ~ I(A-B) + C + offset(B), data)
giving:
Call:
lm(formula = D ~ I(A - B) + C + offset(B), data = data)
Coefficients:
(Intercept) I(A - B) C
1.6429 -0.3571 -0.1429
The I(A-B)
coefficient equals the coefficient of A
in the original formulation and one minus it is the coefficient of C
. We see that all approaches do lead to the same coefficients.