To add to @Rawling's answer, practical examples could be shown using an example such as this:
class Base
{
// base property
public virtual string Name
{
get { return "Base"; }
}
}
class Overriden : Base
{
// overriden property
public override string Name
{
get { return "Overriden"; }
}
}
class New : Base
{
// new property, hides the base property
public new string Name
{
get { return "New"; }
}
}
1. Overriding
In case of the overriden property, base class' virtual method's slot is replaced by a different implementation. Compiler sees the method as virtual, and must resolve its implementation during run-time using the object's virtual table.
{
Base b = new Base();
Console.WriteLine(b.Name); // prints "Base"
b = new Overriden();
// Base.Name is virtual, so the vtable determines its implementation
Console.WriteLine(b.Name); // prints "Overriden"
Overriden o = new Overriden();
// Overriden.Name is virtual, so the vtable determines its implementation
Console.WriteLine(o.Name); // prints "Overriden"
}
2. Hiding
When a method or a property is hidden using the new
keyword, the compiler creates a new non-virtual method for the derived class only; base class' method remains untouched.
If the type of the variable is Base
(i.e. only contains the virtual method), its implementation will be resolved through the vtable. If the type of the variable is New
, then the non-virtual method or property will be invoked.
{
Base b = new Base();
Console.WriteLine(b.Name); // prints "Base"
b = new New();
// type of `b` variable is `Base`, and `Base.Name` is virtual,
// so compiler resolves its implementation through the virtual table
Console.WriteLine(b.Name); // prints "Base"
New n = new New();
// type of `n` variable is `New`, and `New.Name` is not virtual,
// so compiler sees `n.Name` as a completely different property
Console.WriteLine(n.Name); // prints "New"
}
3. Summary
If a part of your code accepts the base type, it will always use the virtual table during run-time. For most OOP scenarios, this means that marking a method as new
is very similar to giving it a completely different name.
4. Object sizes after instantiation
Note that instantiating any of these types doesn't create a copy of the virtual table. Each .NET object has a couple of bytes of header and a pointer to the virtual table of table of its type (class
).
Regarding the new
property (the one which is not virtual), it is basically compiled as a static method with thiscall semantics, meaning that it also doesn't add anything to the size of the instance in memory.