Main Problem: How can the scipy.signal.cwt()
function be inversed.
I have seen where Matlab has an inverse continuous wavelet transform function which will return the original form of the data by inputting the wavelet transform, although you can filter out the slices you don't want.
Since scipy doesn't appear to have the same function, I have been trying to figure out how to get the data back in the same form, while removing the noise and background. How do I do this? I tried squaring it to remove negative values, but this gives me values way to large and not quite right.
Here is what I have been trying:
# Compute the wavelet transform
widths = range(1,11)
cwtmatr = signal.cwt(xy['y'], signal.ricker, widths)
# Maybe we multiple by the original data? and square?
WT_to_original_data = (xy['y'] * cwtmatr)**2
And here is a fully compilable short script to show you the type of data I am trying to get and what I have etc.:
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt
# Make some random data with peaks and noise
def make_peaks(x):
bkg_peaks = np.array(np.zeros(len(x)))
desired_peaks = np.array(np.zeros(len(x)))
# Make peaks which contain the data desired
# (Mid range/frequency peaks)
for i in range(0,10):
center = x[-1] * np.random.random() - x[0]
amp = 60 * np.random.random() + 10
width = 10 * np.random.random() + 5
desired_peaks += amp * np.e**(-(x-center)**2/(2*width**2))
# Also make background peaks (not desired)
for i in range(0,3):
center = x[-1] * np.random.random() - x[0]
amp = 40 * np.random.random() + 10
width = 100 * np.random.random() + 100
bkg_peaks += amp * np.e**(-(x-center)**2/(2*width**2))
return bkg_peaks, desired_peaks
x = np.array(range(0, 1000))
bkg_peaks, desired_peaks = make_peaks(x)
y_noise = np.random.normal(loc=30, scale=10, size=len(x))
y = bkg_peaks + desired_peaks + y_noise
xy = np.array( zip(x,y), dtype=[('x',float), ('y',float)])
# Compute the wavelet transform
# I can't figure out what the width is or does?
widths = range(1,11)
# Ricker is 2nd derivative of Gaussian
# (*close* to what *most* of the features are in my data)
# (They're actually Lorentzians and Breit-Wigner-Fano lines)
cwtmatr = signal.cwt(xy['y'], signal.ricker, widths)
# Maybe we multiple by the original data? and square?
WT = (xy['y'] * cwtmatr)**2
# plot the data and results
fig = plt.figure()
ax_raw_data = fig.add_subplot(4,3,1)
ax = {}
for i in range(0, 11):
ax[i] = fig.add_subplot(4,3, i+2)
ax_desired_transformed_data = fig.add_subplot(4,3,12)
ax_raw_data.plot(xy['x'], xy['y'], 'g-')
for i in range(0,10):
ax[i].plot(xy['x'], WT[i])
ax_desired_transformed_data.plot(xy['x'], desired_peaks, 'k-')
fig.tight_layout()
plt.show()
This script will output this image:
Where the first plot is the raw data, the middle plots are the wavelet transforms and the last plot is what I want to get out as the processed (background and noise removed) data.
Does anyone have any suggestions? Thank you so much for the help.
scipy.signal.icwt
function that could get the inverse and hide all of the math and technicalities, but it appears you have to perform that yourself. So, the problem is I don't understand the math of how to do the inverse of thecwt()
function. They don't really describe enough in the documentation of how to do that. – Katerinekates